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Summary

This thesis deals with the analysis of large-scale molecular data. It is focused on the
identification of biologically meaningful components and explains the potentials of such
analyses to gain deeper insight into biological issues. Many aspects are discussed in-
cluding component search criteria to obtain the major information in the data and
interpretation of components.
The first chapter provides an introduction to the concepts of component extraction and
beyond. Starting with a biological motivation for component extraction and the prob-
lems to identify ideal ones, it introduces many of the central ideas, such as criteria to
find highly informative components and the benefit of component analysis to discover
relations among molecules and the impact of experimental factors, which will be dis-
cussed at greater length in later chapters of this work.
Chapter two deals with the problem of normalisation and its importance to large-scale
data from molecular biology.
Classical principal component analysis (PCA) is reviewed in chapter three. It is described
how PCA is applicable to large-scale data and the impact of prior data normalisation
is discussed. This chapter also gives an overview of the most important algorithms for
PCA, and discusses their benefits and drawbacks. Both chapter two and chapter three
are based on Scholz and Selbig (2006).
Chapter four introduces independent component analysis (ICA). Although non-
correlation in PCA is to some extent reasonable, it is shown that the independence
condition of ICA is more suitable for the purpose of analysing molecular data. This is
particularly important for the problem of multiple distinct factors that impact the ob-
served data. A specific procedure for ICA is proposed, which is applicable to large-scale
molecular data, and was successfully applied to real experimental data in Scholz et al.
(2004a,b).
Chapter five provides a comprehensive treatment of the nonlinear generalisation of PCA.
It considers essentially nonlinear dynamics in time experiments which require more com-
plex nonlinear components. The potentials of such nonlinear PCA (NLPCA) for iden-
tifying and analysing nonlinear molecular behaviour are demonstrated by a cold stress
experiment of the model plant Arabidopsis thaliana. For that purpose, new approaches
to validation and missing data handling are proposed. Nonlinear PCA is adapted to be
applicable to incomplete data. This also provides the ability to estimate missing values,
a valuable property for validating the model complexity. The chapter contains material
of Scholz and Vigário (2002) and Scholz et al. (2005).
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The final chapter is based on the idea of visualising molecular dynamics by integrating
functional dependencies into molecular network representations. A new network model,
denoted as functional network, is proposed. It provides a framework to integrate re-
sults of component analysis as similarity or distance information in molecular networks.
The advantage over classical network analysis which traditionally is based on pair-wise
similarity measures and static relations, is discussed extensively. The potentials of func-
tional networks to reveal dynamics in molecular systems are demonstrated by generating
a network that visualises the adaptation of Arabidopsis thaliana to cold stress.

Key words: bioinformatics, molecular data analysis, PCA, ICA, nonlinear PCA,
missing data, auto-associative neural networks, validation, inverse problems, molecu-
lar networks
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1 Introduction

Advances in high-throughput technologies have led to a rapidly increased number of
simultaneously measured expression levels of various genes as well as concentration levels
of metabolites or proteins. Thus, there is a great demand for methods for analysing such
profile data of many variables.
A research field where such high-dimensional data are well-known is the field of machine-
learning. Here, many modern techniques were developed for image or signal analysis. It is
therefore not surprising that many of the machine-learning techniques became important
in bioinformatics. Major emphasis is given on the task of an integrative functional
analysis driven by the availability of large-scale experimental data sets of activation or
concentration values from various molecular levels: the transcriptome, the metabolome
and the proteome.

1.1 Biological motivation

The primary motivation for studying biological systems, the cell or the entire organism,
is to get a better understanding of complex molecular processes. Up to now, there is only
little knowledge about the functions of genes, their protein products or gene-metabolite
relations. To gain more information about the interplay between molecules of a cell,
to determine the molecular network, and to learn more about molecular responses to
changed environments is, therefore, one of the great challenges. Plants have a large
ability to adapt to adverse environmental circumstances. The sensory mechanisms used
to cope with stress conditions as well as survival strategies for adaptations can therefore
be well investigated on the model plant Arabidopsis thaliana (The Arabidopsis Genome
Initiative, 2000).
Many experiments were designed to investigate molecular responses under different en-
vironmental conditions such as day and night, cold stress, and temporal courses, or
variations of different genotypes. The output of these experiments are usually large data
matrices of many measured variables for different biological samples. In the beginning,
research was mainly focused on expression levels of genes usually measured by microar-
rays (DNA chips). Though, due to advances in chromatographic mass spectrometry,
concentration levels of metabolites or proteins also became available. This makes it
possible for an integrative analysis of the different molecular levels to provide a com-
prehensive insight into the molecular system. Such an integrative analysis is important,
since – as the molecules of a cell usually interact strongly between molecular levels – a
single level view would be very restrictive. To analyse the responses at several molecular
levels simultaneously is, therefore, very advantageous.
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Figure 1.1: Visualising the major characteristics of high-dimensional data is helpful
to understand how molecular data reflect the investigated experimental conditions.
The large number of variables is given by genes, metabolites or proteins measured for
different biological samples. On the right, a visualisation of samples from different
experimental conditions is illustrated.

The attempt is made to answer several biological questions by the analysis of such data.
It goes from simply confirming the expected molecular response up to identifying po-
tential candidates involved in a biological process with the final objective of identifying
potential molecular interactions.
Even though this work is mainly focused on the model plant Arabidopsis thaliana, the
proposed algorithms can be applied to molecular data from any other organism as well.

Explorative analysis

First, we would generally like to know whether the experimental conditions are reflected
in the data. Is there a biological response and can we measure it with today’s tech-
nologies? Furthermore, we would like to know how well the experimental conditions
are reflected and whether there is other unexpected information, biological or technical
artifacts or simply undirected noise. Basically, it is the simple but nevertheless essential
question of what we really measure. The purpose of such primary analysis is to identify
and present all information contained in the data set. This kind of investigative or ex-
plorative analysis can be well achieved by data visualisation methods in an unsupervised
manner. For example, as illustrated in Figure 1.1, by reducing the dimensionality to two
dimensions and plotting them against each other. Unsupervised means that the experi-
mental knowledge (e.g., group categories of samples) is not involved in the analysis, and
so the information provided by unsupervised methods is extracted independently from
this knowledge. Unsupervised analysis can confirm our expectations or even discover
unexpected biological or technical factors (Scholz et al., 2004a). It can also lead to re-
fined definitions of categories (Golub et al., 1999).
In contrast, supervised methods are less suitable for such exploratory analysis. Super-
vised analysis is targeted on group categories (class labels), the main purpose is to predict
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1.2 Component identification

the unknown category of a new sample with high accuracy. This can be very useful in
final applications such as routine diagnostic tasks. In primarily investigative analyses,
however, unsupervised methods often match better our interests in both discovering
new biological knowledge and improving the experimental design, e.g., by detecting and
eliminating technical artifacts.

Identifying candidates

Once we have detected a data response to an investigated physiological function, the
next step would be to identify the respective genes, metabolites or proteins involved in
this biological factor. The aim is therefore to identify the most likely candidates and
to present them in a list, ranked by their plausibility. The top candidates of such a list
are supposed to be highly responsible for the considered physiological function and thus
might be functionally similar or even interact with each other. This can be first validated
with known functional annotations and known metabolic pathways from the literature.
Candidates that are not characterised in literature, however, can be investigated by a
next round of experiments to validate the influence on a specific physiological function
and the interaction with other molecules in the cell. This can be done, for example,
by knocking out a specific candidate gene and observing the effects on the molecular
system.

1.2 Component identification

How are biological or technical factors represented in the data? And how can we detect
and explain them? A well suited approach to this question is to decompose the data
into meaningful components (sometimes also termed features, factors or sources). Our
emphasis here is on unsupervised approaches often referred to as blind decomposition.
A component describes a new variable generated by a weighted combination of all original
variables (e.g., genes). Such a component explains a straight line or a curve embedded
in the data space, as illustrated in Figure 1.2. The shape and orientation of this line
or curve mainly depend on both the data and the optimised criterion, e.g., variance or
an information criterion. Components are useful to visualise the characteristics of the
usually high-dimensional data.
Ideally, components represent important factors responsible for the variation in the data.
In this work the term factor refers to any influence that results in a changed molecular
composition. This includes internal biological processes as well as external changes in
environmental conditions or technical artifacts; for example, the circadian rhythm, dif-
ferences in ecotypes, and changes in temperature or light.
Since a component is a weighted combination of all variables, we can identify the most
important variables (genes) by ranking the variables by their corresponding weights.

3



1 Introduction

These variables contribute strongest to the component and should therefore be most
important for the respective biological factor represented by this component. If a com-
ponent explains a biological process, for example, a stress response, then the identified
most important genes or metabolites are supposed to play a major role in this process,
they might even belong to the same biochemical pathway. Such multivariate analy-
sis is therefore appropriate for the task of identifying gene or metabolite combinations
(molecular signatures) instead of individual ones.

The data generation model

In component extraction applications we consider the data as being generated from a
usually small number of influence factors (sometimes termed hidden factors or sources).
We assume that with given information of all potential factors s (external conditions as
well as internal states) and the transformation Φgen : S → X , the molecular data x can
be reconstructed. This is referred to as the generative model x = Φgen(s).
The aim is to decompose the data x into components z which approximate the original
factors s. This requires to find the extraction transformation Φextr : X → Z which is in-
verse to the usually unknown generation transformation Φgen such that s ≈ z = Φextr(x).
The model can be linear or nonlinear. Linear models can be expressed as a (weighted)
sum of their individual parts (factors or genes). Nonlinear models, by contrast, cannot
simply be expressed by a sum. More precisely, the linear transformation Φgen of a linear
model is given by a linear function. A function f(x) is termed linear when it satisfies both
properties: additivity f(x + y) = f(x) + f(y) and homogeneity f(αx) = αf(x), other-
wise it is a more complex nonlinear function.
A linear model can be represented by a matrix multiplication as commonly done in prin-
cipal component analysis (PCA) or independent component analysis (ICA), for example.
The resulting components explain straight lines which together form a hyperplane or
linear subspace embedded in the original data space.
Artificial neural networks are frequently used as nonlinear models to perform nonlinear
transformations such as in nonlinear PCA where the resulting nonlinear components
explain curves that describe a curved subspace of the original data space, as illustrated
in Figure 1.2.

PCA — principal component analysis

Principal component analysis (PCA) is the standard linear approach for extracting com-
ponents. The main application is to reduce the dimensionality (the number of variables)
of the data. The objective is to find a low dimensional representation of the data which
captures most of the variance.
The components are hierarchically ordered. The first component, PC 1, explains the
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Figure 1.2: Schematic illustration of a linear and a nonlinear component in a data
space. The axes represent the variables (e.g., genes) and the data (dots ‘·’) stand for
individual samples from an experiment. A component explains the structure of the
data by a straight line in the linear case, or by a curve in the nonlinear case. Linear
components are helpful for discriminating between groups of samples, e.g., mutant and
wild-type. However, in the case of continuously observed factors such as time series,
the data show usually a nonlinear behaviour and hence can be better explained by a
curve.

highest variance in the data. The second component, PC 2, explains the highest of the
remaining variance orthogonal to the first component. This can be naturally extended
to obtain a desired number of components. Commonly, the first and second component
are plotted against each other to obtain a two-dimensional visualisation that explains
the highest variance of the data.
However, by applying PCA, we strictly assume that the desired information is exactly
provided by variance. But this assumption might not always hold for molecular data
analysis due to the following reasons:

• Often we cannot control the experiments perfectly. Confounding factors (genetic,
environmental, technical) might have a large impact on the variance of the data
as well.

• Experimental data are often distributed in a non-Gaussian fashion; and thus com-
ponents obtained by optimising higher than second order (variance) might be more
reliable, especially when more than two conditions are examined at a time.

• Some genes or metabolites show only a small variance but might nevertheless have
a large impact on the investigated biological process.

An analysis which is not based on variance alone might be more appropriate.
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ICA — independent component analysis

A modern alternative to PCA is independent component analysis (ICA). ICA attempts
to extract statistically independent components. Statistical independence is a stronger
condition than non-correlation in PCA. Informally, it means that the values of one
component provide no information about the values of another component. This suggests
that ICA is more suitable than PCA for providing individual components of distinct
meaning.
However, variance is still an important criterion, but might not be the only one. The
investigated biological factors are usually explained by a large amount of variance in the
data but not necessarily by the biggest. This can be taken into account by a PCA pre-
processing step before ICA is applied. All significantly large variances are maintained in
the PCA step, only small variances are removed. In the next step, the variance criterion
can be ignored. The condition of statistical independence is then used to separate the
contained factors. The aim is to find an optimal balance between different criteria:
correlation and variance as considered by covariance in PCA and information theoretic
criteria such as mutual information in ICA.

Nonlinear PCA (NLPCA)

Linear methods are sufficient as long as no nonlinear data structure can be expected.
Many experiments consider two or a small number of conditions such as mutant and
wild-type or disease and control. The samples (replica) within one condition are as-
sumed to be uniform and hence should be located close to each other in a single cluster.
A linear component would then be sufficient to discriminate between two conditions.
Nonlinearities, by contrast, can be expected when continuously changed factors are in-
vestigated. Typically this occurs when samples are measured over time, but any other
continuously changed environmental parameter or physiological function may also result
in a nonlinear data response. Such data are better explained and analysed by a nonlinear
(curved) component as illustrated in Figure 1.2.
This generalisation of components from straight lines to curves, as a nonlinear extension
of classical PCA, is referred to as nonlinear PCA. Even though a nonlinear extension
of ICA would be of greater interest, it is much more challenging or sometimes even in-
tractable. We therefore focus on nonlinear PCA and show that nonlinear PCA is already
able to identify desired time components.

Missing data

One of the main problems in analysing molecular data is the frequent absence of some
values in the observed sample vectors due to measurement failures. There are many
missing data estimation methods. Each of them is based on different assumptions and
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1.2 Component identification

objectives that are included in the estimation process. This may, e.g., concern the data
structure as well as the measure for an optimal estimation. These assumptions and
objectives may be different or even incompatible to those in the subsequent analysis.
Instead of estimating the values in a separate step, it would therefore be more reasonable
to adapt the analysis methods to be applicable to incomplete data. The attempt is thus
to ignore missing values, not a priori to estimate them. Such adapted analysis, though,
can often itself be used to estimate the missing values.
Concerning component analysis, the objective would be to detect components directly
from incomplete data which is even more challenging for nonlinear components. This can
be achieved by using blind inverse models where the input and the model are optimised
to match a given output. Whereas the input-vector of a model in general has to be
complete, the output-vector does not necessarily have to be so. Therefore, the inverse
model enables us to use the partly incomplete sample vectors as desired outputs to
which component values are estimated as suitable inputs. It thereby naturally models
the generative process from a set of components (factors) to the observed data.
Such an inverse model can easily be extended to a diagnostic model which gives the most
appropriate prediction to a given partially incomplete sample profile. A component, for
example, may explain an interesting physiological function. The model can then be used
to predict the physiological state from new, even incomplete, samples. A prediction based
on metabolite concentrations would then still be possible, even if some metabolites could
not be measured or were removed due to high inaccuracy.

Component versus cluster analysis

Although assigning variables (genes) to different components is to some degree similar to
separating variables into clusters, there are some major differences. First, in component
analysis we do not assume a distinct separation of genes to one or the other component.
The variables can contribute to different components. This naturally accounts for the
possibility that specific genes or metabolites may be involved in different biological pro-
cesses. Furthermore, cluster algorithms usually attempt to group all measured variables,
although not all of them respond with the investigated experimental conditions. In com-
ponent analysis, we usually extract only a limited set of relevant components capturing
most of the variation in the data. The variables with the largest contribution to those
components, i.e. the most significant variables, can then be identified. Consequently,
there might be a large number of residual variables which are not associated with any
component. This agrees well with the reasonable objective to group only these variables
into categories that show a strong behaviour in a specific experiment. Many variables
may show no response to the considered experimental conditions, and therefore, can not
be categorised.
Component analysis is also advantageous, as the relevant components are most often in-
terpretable. Usually, we select and consider only components with a biological meaning.
Such a relation can be detected in the primary visualisation step (Figure 1.1).

7
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1.3 Molecular networks

The primary goal of functional analysis is to identify the molecules that are responsible
for a physiological function. However, there is a large interest on a more general view
of molecular regulations. The grand objective is no less than to represent the whole
molecular interplay within a biological system (cells, organs, or entire organisms) by a
molecular network model. Such a comprehensive view to a biological system is a major
issue in Systems Biology.
Differences between distinct organisms (e.g., evolutionary) or between distinct physiolog-
ical states can then be investigated by characterising the topology of the corresponding
molecular networks. More pragmatic issues involve the use of such networks to discover
new biochemical pathways or to identify key molecules.
The molecular network is primarily based on pair-wise interaction knowledge (e.g., gene-
gene or metabolite-gene interactions). To gain this information from experimental data,
it is assumed that molecules which interact with each other show a similar behaviour.
The chosen similarity measure is therefore very important for the usefulness of such re-
constructed networks. The similarity measure is used fundamentally as distance in the
network and hence influences the quality of the molecular network.
A widely used measure is the pair-wise correlation. Although it can be shown (Weck-
werth, 2003; Weckwerth et al., 2004) that correlation networks can show biologically
relevant information under specific circumstances (perfectly controlled stationary and
uniform conditions) there are some strong limitations. On the one hand many biological
relations cannot be detected as they show only low correlation coefficients (Steuer et al.,
2003). The reason is not only the high inaccuracy of the data. It is often caused by
simultaneously varying biological or technical factors which usually cannot be controlled
perfectly. This leads to partial correlations which are difficult to handle in large-scale
data sets due to combinatorial complexity. On the other hand, in large-scale data sets
many gene pairs show a high correlation value by chance. As this is simply caused by
noise in the data, these connections are biologically unreliable.
Even by using other pair-wise similarity measures such as mutual information, we cannot
solve that problem because it is mainly caused by the pair-wise consideration of multi-
variate data sets. Another interesting way would be to use multivariate techniques such
as ICA to detect similarities between genes or metabolites. For example, metabolites
that highly contribute to the same component (same biological process) are all sup-
posed to play a major role in this process and hence might be functionally similar. A
component describes a new (meta-)variable generated by a weighted combination of all
original variables (metabolites). Components can therefore be used as additional nodes
in the network. The weights (loadings) can then be used as similarity measure between
metabolites and components. As biological functionality is included in the resulting net-
work by using the components, such networks can be regarded as functional networks.

8



1.4 Curse of dimensionality

1.4 Curse of dimensionality

One of the major problems in analysing molecular profile data is the very large number of
variables (e.g., genes) compared to a very low number of samples (observations). These
variables form a very high-dimensional data space with known positions for the few
samples only. In such nearly empty data space it is difficult, for example, in classification
tasks, to define reliable decision boundaries that are generalisable for new samples at
any position. Usually, a poor performance is obtained in areas of low sample density.
The size of such low density areas increases very rapidly with the number of variables.
This reduced accuracy of predictive models for data sets with many variables is known
as curse of dimensionality (Bellman, 1961; Stone, 1980). It states that the number of
samples has to increase exponentially with the number of variables to maintain a required
level of accuracy.

Dimensionality reduction

Therefore, an important aspect is to reduce the dimensionality. This can either be done
by feature selection or feature extraction techniques. Feature selection simply means
that a small subset of important variables (sometimes referred to as features) is selected
from the original variable set by using a specific criterion as done, for example, by
Hochreiter and Obermayer (2002) for gene expression data. We focus on feature extrac-
tion techniques which, by contrast, means that each extracted new variable is a specific
combination of all original variables. These new variables are usually referred to as com-
ponents or features. Even though the main emphasis of feature extraction is to obtain
meaningful components (features), it is often used in conjunction with dimensionality
reduction. Independent component analysis (ICA) is an example of feature extraction,
as it aims to extract meaningful components with a high amount of information. By
selecting a subset of relevant components, it can also be used to reduce the dimension-
ality. On the other hand, techniques with a main emphasis on dimensionality reduction,
such as the classical principal component analysis (PCA), can also be regarded as feature
extraction techniques, since the extracted components may often have some meaning.

Supervised and unsupervised methods

The considered methods belong to unsupervised techniques, meaning that the potentially
known group identifier (class labels) are not taken into account by the algorithm. As
the main objective is often to find a component that discriminates the investigated ex-
perimental conditions, it might be useful to extract components in a supervised manner
by using the group identifiers, e.g., with classical Fischer’s linear discriminant analysis
(Fisher, 1936). However, there is a very high risk of over-fitting when applied to a large
number of variables and only few samples — the curse of dimensionality. Over-fitting
means that the result is driven by the noise in the data and not by the underlying bio-
logical process. One solution would be to first reduce the dimensionality by unsupervised
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1 Introduction

methods (e.g., by PCA). After such pre-processing step supervised techniques can be
successfully applied as shown by Goodacre et al. (2003) and Johnson et al. (2003) for
metabolite data.
Supervised methods are target orientated, they are useful to analyse a specific known
experimental factor. They cannot be used to cover the investigative or exploratory as-
pect to identify the major experimental factors reflected in the data.
Unsupervised methods, by contrast, have the previously mentioned advantage that the
extracted components explain the major or global information or the most important
characteristics of the data, independently from the experimental knowledge which is
unknown to the algorithm. This can tell us whether the investigated experimental con-
ditions are well reflected by the data as expected, or whether there are stronger artifacts
due to badly controlled technical or environmental factors, or whether there are even
unexpected biological characteristics.
Sometimes we cannot absolutely trust the labelling of samples. In time series, for exam-
ple, the response time and developmental state of individual organisms in any experiment
differs from the exact physical time of measurement. An unsupervised model will there-
fore be superior in accommodating the unavoidable individual variability of biological
samples.
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2 Normalisation

The main objective of this work is to analyse molecular data by identifying meaningful
components. Since normalisation has a significant impact on the performance of the
final analysis, the effects of normalisation with regard to large-scale data from molecular
biology are shortly discussed in this chapter (Figure 2.1).

Data Normalisation Analysis

component 1

co
m

po
ne

nt
 2

 Visualisation

Figure 2.1: Normalisation and analysis techniques are both important for optimal vi-
sualisation or component extraction. The plot on the right illustrates samples from
different experimental conditions.

The choice of normalisation is in general as crucial as the choice of the analysis technique
itself. The final analysis technique is usually chosen to achieve a specific purpose of anal-
ysis with respect to the information we are searching for. The optimal normalisation, by
contrast, depends more on the characteristics of the data. In general, due to technical
and biological reasons, different variables (e.g., different genes) or different samples are
not on the same scale and have to be rescaled in a suitable way. Normalisation, in prin-
ciple, means to make different variables and different samples comparable to integrate
them in a joint analysis.
Another important aspect of normalisation is to represent the relevant information in an
optimal way and to remove non-biological contributions. Normalisation is a convenient
way to include prior knowledge such as additional technical or biological knowledge and
to take into account assumptions about the characteristics of the data.
Rescaling the data is identical to using a new metric in the data space. The aim is to
find a metric that optimally represents the desired information. This is closely related to
finding the optimal distance or similarity measure as used in cluster or network analysis.
It is to some extent also related to finding the optimal kernel in a kernel technique such
as support vector machine (SVM) (Vapnik, 1995), where a kernel can be interpreted as
a similarity measure. Therefore, a good normalisation or metric can reduce the effort in
subsequent analysis techniques.
For the purpose of this discussion, platform specific data processing such as background
corrections is not considered here. Neither the particular microarray nor mass spec-
tronomy platform, that is used to obtain gene expression or metabolite and protein
concentrations, is explicitly considered here. The assumption is to have a data matrix
of high-quality measurements representing intensities or concentrations.
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2 Normalisation

Consider a set of n experimental samples, each characterised by d measurements (one
for each variable), e.g., d different genes. The data can be arranged in a d x n matrix
where rows represent variables (e.g., genes) and columns correspond to different sam-
ples. The data matrix can be normalised row-wise or column-wise, such that either the
variables or the samples are normalised to make them more comparable. The variables
can be rescaled or the total intensity amount of sample vectors can be set constant.
One advantage of a sample normalisation is that in case of additional samples the new
samples can be normalised individually, no renormalisation of all samples is required,
which is important, for example, for diagnostic tasks. Variable normalisation, however,
is important when the exact contribution of each variable (gene) to a component or
visualisation result is of interest. Both Log fold change as variable and unit vector norm
as sample normalisation are convenient normalisation techniques for molecular data.
Nevertheless, it is often useful to preselect the usually very large number of variables
in advance, e.g., by variance or intensity. Although a small intensity or variance might
have a large biological impact, small observed values are usually strongly corrupted by
the relatively large amount of background noise and, therefore, are normally of no use.
A comprehensive discussion of data matrix normalisation in respect of microarrays can
be also found in Quackenbush (2002).

2.1 Log fold change (log ratio)

To apply log fold change, it is assumed that the relevant information is the relative change
in expression or concentration with respect to the average or to control samples. These
ratios should be transformed by a logarithm, to obtain symmetric values of positive and
negative changes. This is useful, for example, for considering up and down regulated
genes symmetrically. The logarithm to base two (log2) is frequently used, but any other
base can be taken as well. The difference is only given by a global scaling factor c which
does not affect the directions of components in PCA or ICA, e.g., log2(x) = c ∗ log10(x)
with c = 3.32 = log2(10). Thus, to obtain a normalised variable x̃i, the elements of the
variable xi = (x1

i , . . . , x
n
i ) are divided by the median of xi and subsequently transformed

by a logarithm.

x̃i = log

(
xi

median(xi)

)
Now, a high variance would point out a high relative change, useful for variance consid-
ered analysis techniques such as PCA. It is convenient to use the median, as it is more
robust against outliers than the mean. When control samples are available as references
(e.g., the wild-type in a mutant experiment or the zero time point in a time series), the
samples can be divided by the median of these control samples alone.

x̃i = log

(
xi

median(xcontrol
i )

)

As the meaning is quite similar, the results are expected to be very close, though a
division by control might be easier to interpret.
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2.2 Unit vector norm

2.2 Unit vector norm (total intensity)

For applying unit vector norm we assume that the total amount of a sample vector
v = (v1, v2, . . . , vd) is nonrelevant, and can therefore be removed by scaling the norm
‖ v ‖ (the power or intensity) of this vector to a fixed value, usually one, ‖ ṽ ‖= 1. The
normalised sample vector ṽ is obtained by

ṽ =
v

‖ v ‖

Vector normalisation emphasises the ratios between measurements of different variables
(e.g., different genes) for one sample. Vector norm is in general referred to as p-norm
(Golub and van Loan, 1996). The most important ones are l1 and l2 norm.

l1-norm ‖ v ‖1 =
∑

i |vi|
l2-norm ‖ v ‖2 =

√∑
i |vi|2

lp-norm ‖ v ‖p = p
√∑

i |vi|p
linfinity-norm ‖ v ‖∞ = maxi |vi|

The l1 vector norm can be interpreted as transforming data into percentages. The l2
vector norm explains the Euclidean length of a vector. This is geometrically interesting,
as it projects the samples onto a unit hypersphere, as shown in Figure 2.2.

xi

xj

Figure 2.2: Geometrical illustration of l2 vector norm. The samples (‘◦’) are projected
onto a hypersphere. This strongly affects the pairwise distances. Highly correlated
samples end up close to each other, even if they had a large distance beforehand.
Geometrically, highly correlated samples are located in the same direction from the
origin, but with possibly different intensities.

Scaling sample vectors to unit length is closely related to correlation analysis, as highly
correlated samples are projected close to each other (small Euclidean distance). With
gene expression data it might be convenient to reduce the very large number of genes
by a kind of filtering (feature selection). At low intensities close to the background, the
observed values may more likely be caused by noise. Genes that fall below a certain
threshold of a specific criterion, e.g., the variance or intensity, should therefore not be
taken into account. Otherwise, the noise in the potentially large number of experimen-
tally nonrelevant genes may confuse the vector norm.
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2 Normalisation

2.3 Unit variance

By scaling each variable to unit variance σ2 = 1 it is assumed that the variance σ2
i of

each variable xi, e.g., of each metabolite, has no relevance. As the variance σ2
i is the

square of the standard deviation σi, it is identical to unit standard deviation

x̃i =
xi

σi

Covariance in PCA is then reduced to correlation between variables. The covariance
matrix becomes identical to a correlation matrix. The covariance between two vari-
ables xi and xj cov(xi, xj) = 1

n−1(xi − x̄i)(xj − x̄j)T with mean x̄i = 1
n

∑n
l=1 xl

i is equal
to the correlation corr(xi, xj) when normalised by the standard deviations σi and σj ,
corr(xi, xj) = cov(xi,xj)

σiσj
. Thus covariance is equal to correlation for variables that have

variance or standard deviation equal one σ2 = 1 = σ.
For a variance optimisation technique such as PCA, all variables have the same chance
to get a high rank within the important first components, as they all have the same
variance. The first component of PCA, which usually reflects variables of high variance
and correlation, now solely depends on the largest group of highly correlated variables,
which jointly form the direction (component) of highest variance in the data space.
A similar normalisation is termed z-score x̃i = xi−x̄i

σi
where the standard deviation σi is

also set to one and additionally the mean x̄ is set to zero. However, whether the mean
is zero or not is usually not important for PCA or ICA, as the algorithms also remove
the mean automatically.
Although unit variance or z-score are standard normalisation methods in many areas,
there are strong limitations when applied to molecular data where variance has some im-
portance. This is caused by an important difference in the experimental design. Usually,
in many areas variables are observed that are expected to be related to the investigated
factor and hence we can assume that a high percentage of these variables gives us use-
ful information. Molecular data, by contrast, are usually obtained by high-throughput
screening techniques, where as many variables (e.g., genes) as possible are measured.
The goal is mostly to find some relevant candidates within the large number of measured
variables. The relevant variables may be emphasised by variance caused by variations
at concentration or activity level. Variables which do not respond to our experiment
usually have a low variance and hence a low contribution to results of many analysis
techniques. The disadvantage of unit variance, however, is that by scaling up these
nonrelevant variables, their impact on the analysis result is increased dramatically. Unit
variance normalisation should therefore not be used without any pre-selection, especially
with the large number of gene expression data. After such pre-selection we can assume
that most of the selected genes are experimentally relevant and then unit variance might
be reasonable. Caution is also required due to the limited number of samples, where
high correlations might occur by chance.
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3 PCA — principal component analysis

Variables from gene expression or metabolite data sets are generally correlated in some
way. This means that the data points (samples) do not fill out the entire data space.
The data usually tend to be restricted to a subspace of lower dimensionality. This leads
to the concept of dimensionality reduction: to find a low-dimensional data structure hid-
den in high-dimensional observations (Carreira-Perpiñán, 1997). Principal component
analysis (Jolliffe, 1986; Diamantaras and Kung, 1996) reduces the dimensionality, the
number of variables of the data, by maintaining as much variance as possible. This is
illustrated for three dimensions in Figure 3.1. In applying PCA we necessarily assume
that the information we are searching for is exactly provided by the variance in the data.
But this assumes that we have perfectly controlled experiments where all variation is
only caused by the investigated biological process. However, in most cases we cannot
prevent technical artifacts or internal biological variations. Or, we would like to inves-
tigate more than one biological process at a time. Variance may then not be the most
optimal criterion, but still can be used first to gain an informative impression of the data
structure.
PCA transforms a d-dimensional sample vector x = (x1, x2, . . . , xd)T into a usually lower
dimensional vector y = (y1, y2, . . . , yk)T , where d is the number of variables (metabolites
or genes) and k is the number of selected components. The PCA transformation is given
by the k x d matrix V , such that

y = V x

Each row-vector of matrix y contains values (scores) of a new variable yj re-
ferred to as principal component (PC). The component PC j, given by the new
variable yj = (yj1, yj2, . . . , yjn), is a linear combination of all original variables
xi = (xi1, xi2, . . . , xin), weighted by the elements of the corresponding transformation
vector vj = (vj1, vj2, . . . , vjd)

yj =
d∑

i=1

vjixi = vj1x1 + vj2x2 + . . . + vjdxd

n is the number of samples and d is the number of original variables. The weights vji

(sometimes referred to as loadings) give us the contribution of all original variables xi

to the jth component. Geometrically, PCA is equivalent to a rotation of the original
data space. The new axes are the principal components. The vector vj gives the di-
rection of the jth principal component (PC j) in the original data space. The first
component, PC 1, represented by the variable y1, is in the direction of highest variance.
The second component, PC 2, is the direction that maximises the remaining variance
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3 PCA — principal component analysis
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Figure 3.1: Principal component analysis (PCA). Illustrated is the transformation
of PCA which reduces a large number of variables (genes) to a lower number of new
variables termed principal components (PCs). Three-dimensional gene expression sam-
ples are projected onto a two dimensional component space that maintains the largest
variance in the data. This two-dimensional visualisation of the samples allows us to
make qualitative conclusions about the separability of our four experimental conditions.
The component space explains a linear subspace of the original high-dimensional space,
where the data lie on or near by. PCA simply rotates the original data space such that
the principal components (PCs) are the axis of a new coordinate system — the com-
ponent space. This can be mathematically extended to even more than three original
dimensions.

in the orthogonal subspace complementary to the first component. The first and sec-
ond component together explain the two-dimensional plane of highest variance. This
can be naturally extended to obtain the k first principal components. A column-vector
y = (y1, y2, . . . , yk)T contains the k new coordinates in the space of principal components
of the corresponding sample x.

3.1 Conventional PCA

The transformation or rotation matrix V can be estimated by different algorithms.
The classical way is to calculate the eigenvectors of the d by d covariance matrix bet-
ween variables, cov(X) = 1

n−1

∑n
l=1(x

l − x̄)(xl − x̄)T where the vector x̄ contains the
mean of all variables, n is the number of samples, and xl is the lth sample vector
xl = (xl

1, x
l
2, . . . , x

l
d)

T . The eigenvectors are sorted by their corresponding eigenvalues.
The matrix V is then given by the first k eigenvectors vj , (j = 1, . . . , k), to the largest
eigenvalues. Sometimes the correlation matrix is used instead of the standard covariance
matrix. However, this is identical to normalising the data to unit variance in advance,
see section 2.3. As the possibly large number d of variables in molecular data can be
problematic for solving the eigenvalue problem of a d x d covariance matrix, the required
principal components can be more easily obtained by singular value decomposition SVD,
multidimensional scaling MDS or an adaptive PCA method.
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3.2 SVD — singular value decomposition

3.2 SVD — singular value decomposition

A different approach for obtaining the same principal components is singular value de-
composition (SVD), see, e.g., Golub and van Loan (1996). SVD is more efficient than
the PCA covariance approach, especially when there is a large number of variables and
a small number of samples, as is typical in molecular data sets.
The singular value decomposition of a d x n data matrix X is

XT = USV T

The columns uj of U are termed left singular vectors, the columns vj of V are termed
right singular vectors, and the diagonal elements sj of the diagonal matrix S are the
singular values.
If we consider a centred data set X, where the rows, the variables xi, have zero mean,
then the principal components (the scores) yj are given by the columns of the matrix
multiplication Y = US. The columns vj of V are equivalent to the eigenvectors of the
covariance matrix.
A comprehensive description of SVD in relation to PCA with respect to gene expressions
is given by Wall et al. (2003). Other applications of SVD to gene expressions can be
found in (Alter et al., 2000; Holter et al., 2000; Liu et al., 2003).

3.3 MDS — multidimensional scaling

Another convenient way to obtain the principal components is to use a classical approach
of multidimensional scaling (MDS) based on eigenvalue decomposition. MDS, see, e.g.,
Cox and Cox (2001); Buja et al. (1998), gives a projection or visualisation of the data
by using a distance matrix D alone. Therefore, it is useful in cases where only relative
distances dij from one sample i to another sample j are available, and not the exact
position in a multidimensional space. Such a distance can be, e.g., a similar measure
between two sequences. Nevertheless, the distances or similarities can also be derived
from a data matrix, e.g., by using Euclidean distance, covariance, correlation, or mutual
information. The aim is to project the data into a two or low dimensional space such
that the pairwise distances ‖ yi − yj ‖ are as similar as possible to the distances dij given
by the distance matrix, thus minimising the function√∑

i6=j

(dij− ‖ yi − yj ‖)2

There exists a wide variety of methods for performing MDS, where nonlinear projections
are usually more efficient. However, to explain the relation to PCA we consider the
classical linear MDS by eigenvalue decomposition of the covariance matrix as a distance
matrix, D = cov(X). Here, the two eigenvectors to the largest eigenvalues of the distance
matrix give the required projections (components). For a data set X where the variables
xi have zero mean, it is shown, e.g., by Burges (2004), that by using the n by n covariance
matrix between samples (not between variables as in PCA), the eigenvectors of this
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3 PCA — principal component analysis

covariance matrix are the desired principal component scores y. This is advantageous
in the case of small numbers of samples where only a relatively small sample covariance
matrix is required.

3.4 Adaptive algorithms

For small numbers of samples, the estimation of the principal components can be ef-
ficiently calculated using SVD or MDS, even with a very large number of variables
(genes). However, with a decrease in measurement costs, the number of samples will
increase rapidly. Then it becomes impossible to estimate all principal components. We
have to use adaptive algorithms instead which extract the principal components in a
deflationary (sequential) manner, meaning that the components are extracted one after
the other starting from the component of highest variance. Consequently, only the first
k desired components need to be extracted instead of all components.
Convenient algorithms for this task include: Sanger’s learning rule (Sanger, 1989) linear
auto-associative neural networks (Baldi and Homik, 1995), the APEX network by Dia-
mantaras and Kung (1996), and expectation-maximisation (EM) algorithm based PCA
(Roweis, 1997).

3.5 Application of PCA

In general, the techniques are applicable to gene expression as well as metabolite or pro-
tein profile data. As an example, the techniques in this chapter are applied to metabolite
data from a crossing experiment of Arabidopsis thaliana.
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Figure 3.2: Mass spectra of Arabidopsis thaliana crosses, analysed to investigate the
response at the metabolite level.

Data set: There are four groups, two parental lines Columbia ‘Col-0’ and ‘C24’, and
two crosses ‘Col-0 x C24’ and ‘C24 x Col-0’. For each group there are 24 samples (ob-
servations), hence 96 samples altogether. The samples were analysed by using a direct
infusion mass spectrometer without chromatographic separation, thus each spectrum
reflects the composition of all metabolites in a given sample, see Figure 3.2.
Each sample is characterised by 763 variables which contain the intensities at 763 differ-
ent masses (m/z), see Scholz et al. (2004a) for more details about the platform specific
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3.6 Limitations of PCA
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Figure 3.3: PCA applied to metabolite data of Arabidopsis thaliana crosses. The best
projection is given by the second and third principal components (PC 2, PC 3) and
not by the first (PC 1) as expected.

pre-processing. The purpose of the analysis is to investigate how the biological back-
ground is reflected in the metabolite data.

Results: Although PCA is often a very useful technique, it fails to give optimal pro-
jections when applied to our metabolite data set of Arabidopsis thaliana crosses, see
Figure 3.3. The first principal component (PC 1), the component of highest variance,
contains no information for discriminating the lines or crosses. The components PC 2
and PC 3 give a better result, although they are of smaller variance. Consequently, the
major assumption for applying PCA, that the required experimental information have
to be related to the highest variance, does not hold for this particular data set. Addi-
tionally, the discrimination performance of the components is limited. For example, the
best discrimination between the parental lines is not in direction parallel to the axes and
hence not perfectly explained by component PC 3.

3.6 Limitations of PCA

Ideally, experiments are designed such that only the relevant factors vary, whereas all
other factors are kept as constant as possible. It is assumed that the investigated biologi-
cal process will then be reflected by highest variance in the observed data and hence PCA
would be a good technique to confirm some theoretical assumptions. Often, though, it
is not possible to keep all unwanted factors as constant as needed. There are techni-
cal artifacts or unwanted biological and environmental variation that also have a large
impact on the variance in the data. Even by using normalisation techniques we often
cannot reduce these contributions sufficiently. Variance might still be important to some
part, but we have to distinguish relevant from nonrelevant contributions. It is therefore
necessary to integrate approaches that in addition optimise other criteria than variance.
This is, in particular, important when the overall data are non-Gaussian distributed as
typical for most molecular data.
In the next chapter it will be shown that independent component analysis (ICA) in com-
bination with PCA fits our requirements better than PCA alone. The aim is to identify
all factors which have a large impact on the data and to represent them separately by
individual components.
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4 ICA — independent component analysis

In many fields researchers are interested in reliable methods and techniques enabling the
extraction or separation of useful information from superimposed signals corrupted by
noise and interferences. The identification of original signals or factors from a given data
set is the focus of blind source separation (BSS). The term ‘blind’, in this context, means
that both the original factors (sources) and the mixing process are unknown. With the
assumption that the observed data are given by a linear combination of mutually in-
dependent factors, we can apply independent component analysis (ICA) to solve this
source separation problem.
ICA was first motivated by the so called cocktail party problem: with the aim to identify
individual speakers or music from a sound mixture given by several microphones. When
we consider molecular experiments, the observed variables (genes, metabolites, or pro-
teins) represent the molecular response to specific experimental factors. The observed
gene expression value, metabolite or protein concentration depends essentially on the
particular value of many external or internal factors such as light, temperature, devel-
opmental stage or simply the ecotype. Molecular data can therefore be considered as a
mixture of information from different original factors, or simply as a response to a com-
bination (mixture) of several factors as visualised in Figure 4.1. It should be noted that
the arrows in Figure 4.1 do not necessarily mean causality in the biological sense. Many
internal factors, such as the current state of a circadian rhythm, can only be seen as
informative factors driven by the molecular activation or concentration itself. We simply
assume that with the given information of all possible factors (external conditions as well
as internal states) and the mixing process (the dependencies), the molecular data can
be reconstructed. The objective is therefore to explain the data by such a generative
model.
ICA can be used to solve this blind source separation problem, when a linear combina-
tion can be assumed. The mixing process can then be explained by a matrix A which
transforms a vector s = (s1, s2, . . . , sk)T of particular values si from k different factors
(often termed sources) into a d dimensional sample vector x = (x1, x2, . . . , xd)T , e.g.,
expression values of the corresponding d genes

x = As

It is impossible to identify both the factors s and the transformation A as a unique
solution from a given data set without further conditions. In ICA, the major assumption
is therefore mutual independence of the original factors. The objective is to decompose
the data set X into independent components zi which approximate the original factors si.
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4 ICA — independent component analysis
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Figure 4.1: The motivation for applying ICA is that the measured molecular data can
be considered as derived from a set of experimental factors s. This may include internal
biological factors as well as external environmental or technical factors. Each observed
variable x (e.g., gene) can therefore be seen as a specific combination of these factors.
The illustrated factors may represent an increase of temperature (s1), an internal cir-
cadian rhythm (s2), and different ecotypes (s3).
With the sometimes reasonable assumption of linearly combined factors that are inde-
pendent and non-Gaussian, we can use ICA to identify the original factors s and the
dependencies given by the matrix A.

The attempt of ICA is hence to find the reverse transformation given by a matrix W ,
which is approximately inverse to the unknown matrix A (W ≈ A−1), such that

s ≈ z = Wx

As in practise it is often impossible to find components that are absolutely independent,
the goal is to find a separating matrix W so that the components zi are as independent
as possible.
The meaning of each extracted component can often be interpreted with additional
experimental biological as well as technical knowledge. We are therefore able to detect
and interpret both expected and unexpected factors. Components related to the exam-
ined factors can confirm the expected molecular response, whereas other components
may point out unexpected factors caused by interesting unforeseen biological behaviour
or simply by technical artifacts. In addition to the component itself, we can also provide
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the most important variables (e.g., genes) of highest contribution to a component. Or,
from the point of view of a generative model, we can give the most important variables
which depend strongest on a specific factor represented by a component.
Applied to molecular data, ICA can outperform the classical PCA as shown in Fig-
ure 4.6. This higher informative performance can be achieved by adapting ICA to the
characteristics of experimental data in molecular biology. As illustrated in Figure 4.2,
this includes a combination with PCA as a pre-processing step and the selection of
sub-Gaussian instead of the super-Gaussian components relevant in sound separation.

Data PCA ICA Kurtosis ICs

Figure 4.2: The proposed ICA procedure. First, the data set is reduced by PCA
thereby maintaining all of the relevant variances. ICA is applied to this reduced data
set and the extracted independent components are ranked by their kurtosis value to
obtain components that are sub-Gaussian distributed.

Bibliographic notes. ICA was first introduced by Comon (1994), with subsequent de-
velopments by Bell and Sejnowski (1995). Since then a wide variety of ICA algorithms
have been developed (Hyvärinen and Oja, 2000; Bell and Sejnowski, 1995; Ziehe and
Müller, 1998; Blaschke and Wiskott, 2004; Bach and Jordan, 2002). Comprehensive
introductions to ICA can be found in Hyvärinen and Oja (2000), Stone (2002), and in
several books published in recent years (Haykin, 2000a,b; Hyvärinen et al., 2001; Ci-
chocki and Amari, 2003; Stone, 2004).
One of the first motivations for the development of ICA was sound signal separation.
Now, computational neuroscience is a major field of application of ICA in biomedical
science. The aim is to identify artifacts and signals of interest from magnetoencephalo-
grams (MEG) (Vigário et al., 2000; Tang et al., 2002) and from electroencephalograms
(EEG) (Jung et al., 2000; Makeig et al., 2002). ICA has also become important in
molecular biology. It has been applied by Liebermeister (2002) to analyze gene expres-
sion patterns during the yeast cell cycle and in human lymphocytes. Martoglio et al.
(2002) applied ICA to ovarian cancer data. In Lee and Batzoglou (2003) different ICA
algorithms were compared and applied to yeast cell cycle, C. elegans, and human gene
expression data. Saidi et al. (2004) showed that clustering on components from ICA
give more biologically reasonable groupings than clustering on components from PCA.
In Scholz et al. (2004a) ICA was proposed to be used in a particular manner (Fig-
ure 4.2) which was successfully applied to metabolite data from crosses of the model
plant Arabidopsis thaliana. It was found that ICA extracts more meaningful and better
interpretable components than PCA, and even an unexpected experimental artifact was
discovered. Also, when applied to enzymatic activities (Scholz et al., 2004b), ICA was
able to provide components of greater discrimination and with greater meaning than
components of PCA.
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4 ICA — independent component analysis

 PCA  ICA

Figure 4.3: PCA and ICA applied to an artificial data set. The grid represents the
new coordinate system after PCA or ICA transformation. The identified components
are marked by an arrow. The components of ICA are related better to the cluster
structure of the data. They have an independent meaning. One component of ICA
contains information to separate the clusters above from the clusters below, whereas
the other component can be used to discriminate the cluster on the left from the cluster
on the right.

4.1 Statistical independence

The major assumption for applying ICA is the mutual independence of unknown orig-
inal factors which determine the observed data. The objective of ICA is therefore to
identify these factors by searching for components which are as statistically independent
as possible, not only uncorrelated. Independence means that the values of one compo-
nent provide no information about the values of other components. This is a stronger
condition than the pure non-correlation condition in PCA, where the values of one com-
ponent can still provide information about the values of another component in case of
non-Gaussian distributions. In addition, the components of ICA are not restricted to
being orthogonal as shown in Figure 4.3.
Mathematically, statistical independence is defined in terms of probability densities. Two
variables, z1 and z2, are independent if, and only if, their joint probability p(z1, z2) is
equal to the product of the probabilities of z1 and z2.

p(z1, z2) = p(z1)p(z2)

Using Bayes Theorem, the conditional probability p(z2|z1) of a variable z2 given variable
z1 is

p(z2|z1) =
p(z1, z2)

p(z2)
Thus, if both variables are independent the conditional probability is equal to the un-
conditional probability

p(z2|z1) = p(z2) and p(z1|z2) = p(z1)

This simply means that knowing something about one variable tells us nothing about
the other.
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Figure 4.4: Kurtosis is used to measure the deviation of a particular component dis-
tribution from a Gaussian distribution. The kurtosis of a Gaussian distribution is zero
(middle), of super-Gaussian distributions positive (right), and of sub-Gaussian distri-
butions negative (left). Sub-Gaussian distributions can point out bimodal structures
from different experimental conditions or uniformly distributed factors such as a con-
stant change in temperature. Thus the components of most negative kurtosis provide
the most important information in molecular data.

However, the probabilities are usually unknown and often difficult to estimate. This has
led to a large number of different approaches to extract independent components. Usu-
ally they are based on a contrast function which is used as a measure for independence.
This includes information-theoretic algorithms that minimise the mutual information
between components as well as using higher order statistics such as the maximisation of
kurtosis of each component. The latter is motivated by the idea that the sum (mixture) of
any two independent random variables is closer to a Gaussian (normal) distribution than
the original variables, which can be derived from the Central Limit Theorem of probabil-
ity theory. As a Gaussian distribution is therefore most likely a mixture, we can search
for non-Gaussian distributed components to identify the individual original factors. This
assumes of course that the factors themselves are not Gaussian distributed. Hence we
need a measure of distance from Gaussianity. Possible measures are all normalised cu-
mulants of order higher than two, since these are zero for a Gaussian distribution. A
frequently used measure is the fourth order cumulant — the kurtosis.
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Figure 4.5: ICA is applied to reduced data sets with different numbers of PCs. At
six components of PCA, ICA extracts the highest number of relevant independent
components (ICs), i.e. ICs with negative kurtosis.

4.2 Component ranking

One difficulty in applying ICA to high-dimensional molecular data is that the number of
extracted components equals the number of variables in the data set. The components
have no order as in PCA, and hence we need a criterion to rank the components ac-
cording to our interest. In the classical application of ICA to separate sound signals, we
were interested in components that are super-Gaussian distributed, as this is a typical
distribution of sound signals.
In molecular data, by contrast, sub-Gaussian distributions are of higher importance. A
bimodal distribution can be caused by two clusters of different experimental conditions
and a uniform distribution can be caused by uniformly changing experimental factors
such as temperature or time.
To identify whether a distribution is sub- or super-Gaussian, we can use the measure of
kurtosis, see Figure 4.4. It is a classical measure of non-Gaussianity, it indicates whether
the data are peaked (super-Gaussian) or flat (sub-Gaussian) relative to a Gaussian dis-
tribution

kurtosis(z) =
∑n

i=1(zi − µ)4

(n− 1)σ4
− 3

where z = (z1, z2, ..., zn) represents a variable or component with mean µ and standard
deviation σ, n is the number of samples. The kurtosis is the fourth auto-cumulant after
mean (first), variance (second), and skewness (third).
As a sub-Gaussian distribution has a negative kurtosis value, the components with the
most negative kurtosis can give us the most relevant information.
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4.3 PCA pre-processing

4.3 PCA pre-processing

Originally, ICA was developed to solve a blind source separation problem where we
have few variables and many samples, as given by the high sampling rate in sound
signals. To be applicable to molecular data, ICA has to be adapted to the opposite
situation of few samples in a data space given by many variables. Applying ICA
directly to this high-dimensional data set is questionable and the results are usually of
no practical relevance. It is therefore essential to reduce the dimensionality in advance
which can be well done by PCA. We thereby assume that the relevant information is
still related to a significantly high amount of variance but not necessarily to the highest
amount. The PCA pre-processing step attempts to preserve all relevant variances and
removes only the noise given by small variances. On this reduced data set ICA is then
applied to optimise criteria other than variance, namely information theoretic criteria
such as mutual information (MI) or higher order statistics (kurtosis). The optimal
number of PCs or the optimal reduced dimensionality can be found by considering the
goal of our analysis to find as many relevant components as possible. As a negative
kurtosis indicates relevant components, the optimal dimensionality is then given by the
dimensionality where the highest number of independent components with negative
kurtosis can be extracted, see Figure 4.5. Alternatively, the square sum over these
negative values can be used instead of counting the number of components with negative
kurtosis. This might be a more reliable criterion, since a very negative kurtosis counts
higher than those close to zero.

The role of PCA pre-processing

Why can ICA not be directly applied to the high-dimensional data? On the one hand
the reason is the high level of noise in the data. There are a lot of samples, which
are corrupted by noise, such that they can be regarded as outliers. ICA is sensitive
to outliers, because of their super-Gaussian distribution. ICA is then more likely to
detect components with outliers (which sometimes can be helpful), rather than the
experimental factors of interest. PCA is therefore used to remove noise, including the
impact of outliers, such that the data become more compact. On the other hand, there
are only few samples in an almost empty high-dimensional space. We can find many
directions (components) with a strong bimodal distribution (sub-Gaussian), where half
of the samples can be projected to one position and the other half to the other position.
This might be possible in many permutations of the samples. To avoid this we need
a filter, an additional constraint, such that only bimodal distributions of significantly
large variance will be extracted. Such a variance filtering is achieved by the PCA pre-
processing step.
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Figure 4.6: ICA versus PCA. In the middle, ICA visualisation shows a higher dis-
crimination of the samples than PCA visualisation. Furthermore, in ICA the different
discriminations are optimal given by the two axes, the first two independent compo-
nents (ICs) when ranked by the kurtosis measure. The best PCA result is only given by
the second and third principal component (PC) ranked by variance (Figure 3.3). The
bar plots on the left show the respective values of the ranking criteria of the first six
components for both variance in PCA and kurtosis in ICA. On the right the absolute
contributions (loadings) are plotted against each other for the top 20 masses of high-
est contribution. In PCA the masses are more likely to make a contribution to both
components, whereas in ICA the masses are involved differently, contributing to one or
the other IC, confirming that different ICs represent independent biological processes
where different metabolites are involved.

4.4 Contributions of each variable

As the detected independent components often have a biological interpretation, it would
be important to know which variables (genes/metabolites/proteins) contribute most to
the components. These contributions are given by the transformation matrices of PCA
and ICA and are referred to as loadings or weights.
PCA transforms a d-dimensional sample vector x = (x1, x2, . . . , xd)T into a new vector
y = (y1, y2, . . . , yk)T of usually lower dimensionality k. Thus, PCA reduces the number
d of original variables to a number k of selected components. The PCA transformation
is given by the eigenvector matrix V , y = V x. Similarly, ICA transforms this vector
y into the desired vector z = (z1, z2, . . . , zk)T , containing the independent values zi for
each IC i. For that a de-mixing matrix W is estimated by ICA, z = Wy. V gives the
contributions of each variable to each of the PCs, whereas W gives the contributions of
each PC to each of the ICs. We can combine both matrices U = W ∗ V into a direct
transformation z = Ux, where U gives vector-wise the contributions of each variable to
each of the ICs.
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Figure 4.7: Three components with clearly negative kurtosis are detected. The third
component (IC 3), an almost uniformly distributed factor, could be interpreted as an
experimental artifact, related to the sequence in which the samples were measured.

4.5 Application

ICA, applied to our test case of Arabidopsis thaliana crosses, identified three relevant
independent components (ICs), i.e. three ICs with a significantly negative kurtosis value.
A prior reduction of dimensionality to 5 or 6 principal components was necessary (Fig-
ure 4.5). The extracted independent components could be interpreted biologically. The
first component, IC 1, can be used to discriminate between the crosses from the back-
ground parental lines. The second component, IC 2, contains information to discriminate
the two parental lines (Figure 4.6). The third component, IC 3, is not related to the
biological experiment. However, there is a relation to the identifier of the samples, rep-
resenting the order over time of measurement in the mass spectrometer (Figure 4.7).
Hence, IC 3 is an experimental artifact due to increasing contamination of the QTOF
skimmer along the analytical sequence. This technical factor could not have been dis-
covered by PCA.

4.6 ICA versus clustering

In molecular biology, cluster algorithms are frequently used to divide the full set of
measured variables (genes, metabolites or proteins) into distinct subsets which describe
clusters or groups of molecules (Eisen et al., 1998; Golub et al., 1999). The purpose is
to find a separation where in each single cluster the molecules are functionally similar.
Standard cluster techniques are k-means clustering, hierarchical clustering, or Gaussian
mixture models (Bishop, 1995; Hastie et al., 2001). Although clustering is useful and
intuitive, it suffers from the drawback that it aims to divide and partition variables. This
is not entirely biologically plausible, since we know that a particular gene or metabolite
may be involved in more than one biological process.
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Figure 4.8: Cluster results strongly depend on the selected (observed) variables and
on how they are weighted. If only the variable x1 is known (or very strongly weighted)
as in (A), the samples (dots ‘·’) are clustered completely different to the result with
the only known variable x2 (B). If both variables are known (C), we obtain more and
smaller clusters. Extended to more distinct variables, each sample will belong to its
own cluster, as each sample will become very distinct from any other.
An increasing number of arbitrarily chosen and equally weighted variables leads to an
increase of distinct information. This results in the inability to cluster samples, as each
individual sample will then be equally distinct or similar to any other.

Even though ICA is no cluster algorithm, it is often more suitable for assigning molecules
to different biological functions. In contrast to cluster algorithms, the objective of ICA
is neither to separate the variables nor the samples. ICA attempts to find new co-
ordinates (components) that are statistically independent. These components can of-
ten be interpreted biologically. As different sets of variables might contribute signif-
icantly to different components, there is some relation to clustering the variables. A
component, given by a new variable y, is a weighted sum over all d variables xi thus
y = w1x1 + w2x2 + . . . + wdxd. The largest absolute weight value wi (sometimes referred
to as loading) identifies the variable xi (e.g., gene i) with the largest contribution to this
specific component. Each weight value wi can therefore be seen as a similarity measure
between a variable and a component. To compare ICA with cluster results, a compo-
nent can be seen as a cluster centre and the weight wi can be considered as distance
of a variable to this cluster centre. The main difference, however, is that in ICA the
components are not optimised to separate variables into single groups. Theoretically,
the variables could even contribute equally well to all components. The result whether a
single variable (e.g., gene) contributes to one component (one biological function) or to
several components, is purely driven by the biological data itself. There is no assumption
or optimised criterion to enforce distinct and compact subsets of variables, as it is done
in cluster algorithms.

Similarity in high dimensions

Another interesting problem occurs when we try to cluster samples and not variables as
previously done. The result is often based on a very large number of variables as, for
example, in gene expression data. The problem in measuring as many genes as possible
is that the large number of variables may contain information on many distinct pro-
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4.7 Summary

cesses. When we consider (weight) each variable equally, e.g., by normalising them to
unit variance, different subsets of genes will result in different cluster solutions, where in
each case different samples are grouped together. When all genes are used, the outcome
simply depends on the genes we were able to measure. If we could measure other genes,
we would obtain different results, see Figure 4.8.
A growing number of arbitrarily chosen variables leads to an increase of distinct infor-
mation in the data. This results in an equal distinction or similarity of each individual
sample to any other. This is known as Watanabe’s Ugly Duckling Theorem: with no prior
knowledge, the ugly duckling is as similar to a swan as one swan to another (Watanabe,
1985). With a bad choice of variables the ugly duckling can even be made more similar.
The theorem states that if we do not weight some variables more strongly than others,
everything would be equally similar to everything else. The theorem shows that it is
impossible to have a universal notion of similarity. Any such notion must encode some
assumptions by weighting some variables more than others.
In gene expression data, however, the variables are already weighted by variance (when
not normalised to unit variance). Although variance is not always the optimal criterion,
it can be a reasonable weight, especially for ratio values where a high ratio variance
points to potentially important variables due to a large change in expression values.
However, to find the optimal weight can also be seen as a feature extraction problem.
The aim is then to find one or a small set of components representing all information
relevant for our research. The samples can then be grouped together according to this
information by using the extracted components instead of all variables. The question
of the optimal variable weight then becomes the question of the optimal criterion in
component extraction — one of the key issues considered in this work.

4.7 Summary

We have shown that ICA can outperform classical PCA which is restricted to pure vari-
ance optimisation. The independence condition in ICA, by contrast, leads in general
to components of greater discrimination and distinct meaning. Components of ICA are
therefore often better related to biological factors than components of PCA.
To obtain optimal results, ICA has to be combined with a suitable pre-processing and a
component ranking criterion. Important components in molecular data are distributed
in a sub-Gaussian fashion, as opposed to sound signals with super-Gaussian distribu-
tions. We therefore ranked the extracted components by their kurtosis. PCA was used
as pre-processing to reduce the dimensionality before ICA can be applied. Therefore, the
overall component extraction criterion covers both variance in PCA pre-processing and
higher order statistics in the subsequent ICA. The number of principal components in
PCA defines how both criteria are balanced. The trade off between them can be found
by a criterion that we have proposed.
The described approach was made available for public use in MetaGeneAlyse, a
server-based system for molecular data analysis, accessible via a web-interface at
http://metagenealyse.mpimp-golm.mpg.de .
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4 ICA — independent component analysis

Applied to our experiment of Arabidopsis thaliana crosses, ICA was able to detect both
expected and unexpected factors. Two components were related to biological factors
and hence confirmed our experiment, while a third component of clear relevance was
discovered and could be interpreted as a technical artifact.
Due to assumed linear dependencies, ICA is a simplified model of reality, but neverthe-
less sufficient to describe many phenomena, and can provide valuable results. However,
sometimes more complex nonlinear models are needed to analyse a new class of ex-
periments, designed to observe variations continuously over time, as shown in the next
chapter.
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5 NLPCA — nonlinear PCA

So far we have focused on linear methods for molecular data analysis, in particular PCA
and ICA. Linearity, in this context, means to search for important directions in the data
space. The data can then be linearly transformed such that the positions of the samples
along such a direction are explained by new variables referred to as components. As
these components are restricted to be linear, we have to assume that the characteristics
of the data can be explained by straight lines. This is reasonable as long as we con-
sider experiments with two or a low number of discrete conditions. Typical experiments
are those with disease and control or mutant and wild-type samples. Such samples are
expected to be organised by clusters and can therefore be sufficiently discriminated by
linear components, as illustrated in Figure 1.2 in the introduction chapter.
More complex nonlinear correlations, by contrast, become important with an increas-
ing number of time experiments. That includes day and night rhythmicity as well as
time dependent adaptation to changed environments. As individual molecules generally
behave differently over time, the observed molecular data typically present a nonlinear
(curved) structure. This means that the data are located within a nonlinear subspace,
and hence can be better explained by a single or low number of nonlinear (curved) com-
ponents, as illustrated in Figure 5.1. Such transformation can be regarded as nonlinear
dimensionality reduction. Ideally, the components are related to the investigated exper-
imental factors, most commonly to time.
Our main objective is hence to visualise and analyse the potential nonlinear structure
of molecular data sets by components that are generalised from straight lines to curves.
The components are required to explain as much information as possible in a least square
error sense. This leads to a nonlinear generalisation of standard linear principal compo-
nent analysis (PCA) — the nonlinear principal component analysis (NLPCA). Special
emphasis is hereby placed on the challenging problem of identifying components from
data sets with missing data.
We focus on an NLPCA based on a neural network — the auto-associative neural net-
work (Kramer, 1991; DeMers and Cottrell, 1993; Hecht-Nielsen, 1995; Kirby and Mi-
randa, 1996; Malthouse, 1998). It is successfully applied in the fields of atmospheric and
oceanic sciences (Hsieh, 2004; Monahan et al., 2003), in astronomy and even in biomed-
ical research. In Scholz and Vigário (2002) a hierarchically extended version of NLPCA
was developed and applied to spectral data from stars and to electromyographic (EMG)
recordings for different muscle activities.
Even though the term nonlinear PCA (NLPCA) is commonly referred to the auto-
associative approach, there are many other methods which visualise data and extract
meaningful components in a nonlinear manner. Locally linear embedding (LLE) (Roweis
and Saul, 2000; Saul and Roweis, 2004) and Isomap (Tenenbaum et al., 2000) were de-
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5 NLPCA — nonlinear PCA

original data space X component space Z

Φgen : Z → X

Φextr : X → Z

Figure 5.1: Nonlinear dimensionality reduction. Illustrated are three-dimensional
samples that are located on a one-dimensional subspace, and hence can be described
without loss of information by a single variable (the component). The transformation
is given by the two functions Φextr and Φgen. The extraction function Φextr maps each
three-dimensional sample vector (left) onto a one-dimensional component value (right).
The inverse mapping is given by the generation function Φgen which transforms any
scalar component value back into the original data space.
Such circular or helical trajectory over time is not uncommon in molecular data. The
horizontal axes may represent metabolites that behave in a circadian rhythm, whereas
the vertical axis might represent a metabolite with an increase in concentration due to
adaptation to a stress situation.

veloped to visualise high dimensional data by projecting (embedding) them into a two or
low-dimensional space. A mapping function as a nonlinear model is not explicitly given.
Principal curves (Hastie and Stuetzle, 1989) and self organizing maps (SOM) (Kohonen,
2001) are useful for detecting nonlinear curves and two-dimensional nonlinear planes.
Both methods are limited to the extraction of maximally two components, due to high
computational costs. Kernel PCA (Schölkopf et al., 1998) is advantageous in noise re-
duction (Mika et al., 1999) or, when used as pre-processing, to improve classification
results.
In the previous chapter, we have shown that ICA in general meets better our require-
ments than PCA. A nonlinear generalisation of ICA would therefore be of great interest.
However, the nonlinear extension of ICA is not only very challenging but also intractable
or non-unique in the absence of any a priori knowledge of the nonlinear mixing process.
Therefore, special nonlinear ICA models simplify the problem to particular applications
in which some information about the mixing system and the factors (source signals) is
available, e.g., by using sequence information (Harmeling et al., 2003). A discussion of
nonlinear approaches to ICA can be found in Jutten and Karhunen (2003); Cichocki and
Amari (2003).
We restrict our attention to the more manageable task of a nonlinear PCA, motivated
by the idea that nonlinear PCA, if performed perfectly, should in principle be able to
remove all nonlinearities in the data such that a standard linear ICA can be applied
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subsequently to achieve an overall nonlinear ICA. Even though this is more theoretical,
practically, we will show that nonlinear PCA already generates the desired time com-
ponent when the data are of adequate quality in the sense that there are no additional
artifacts and only a small amount of almost Gaussian noise.
Our challenge is to model the nonlinear process even when the data have missing values.
In addition, it should be possible to interpret the nonlinear molecular behaviour, for
which we explicitly need the nonlinear mapping functions. This can be provided by the
neural network based nonlinear PCA. We will show that it can be applied to incomplete
data sets by modelling only the second part of the auto-associative neural network, the
reconstruction or generation part. The difficulty herein is to estimate both the model
weights and the inputs which are now the required components. This is sometimes re-
ferred to as a blind inverse problem.
All methods discussed in this chapter are again unsupervised techniques. They are based
entirely on the observed molecular data itself, without reference to the corresponding
experimental target data such as the time information. Thus, the risk of over-fitting is
much lower than in supervised regression models. Furthermore, the response time and
developmental state of plant individuals in any experiment differs from the exact physi-
cal time measurement. Hence we cannot absolutely trust the physical experimental time
for the description of biological experiments. An unsupervised model will be superior
in accommodating the unavoidable individual variability of biological specimens such as
plants.

Data generation and component extraction

To extract components, linear as well as nonlinear, we assume that the data are driven
by a number of factors and hence can be considered as being generated from them. Since
the number of varied factors are usually smaller than the number of observed variables
the data are located on a subspace of the given data space. The aim is to describe
these factors by components, which are embedded in the data space and thereby explain
this subspace. Nonlinear PCA is not being limited to linear components and hence the
subspace can be curved, as illustrated in Figure 5.1.
We have a data space X given by the observed variables and a component space Z
which is a subspace of X . Nonlinear PCA aims to find both the subspace Z and
the mapping between X and Z. The mapping is given by nonlinear functions Φextr

and Φgen. The extraction function Φextr : X → Z transforms the sample coordinates
x = (x1, x2, . . . , xd)T of the d-dimensional data space X into the corresponding coordi-
nates z = (z1, z2, . . . , zk)T of the component space Z of usually lower dimensionality k.
The generation function Φgen : Z → X̂ is the inverse mapping which reconstructs the
original sample vector x from their lower-dimensional component representation z. Thus,
Φgen approximates the assumed data generation process.
While the auto-associative network provides a model for both the extraction and the
generation process, we will show that modelling the generation process alone offers a lot
of advantages concerning missing data and inverse problems.
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5 NLPCA — nonlinear PCA
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Figure 5.2: Standard auto-associative neural network. The network output x̂ is re-
quired to be equal to the input x. Illustrated is a [3-4-1-4-3] network architecture.
Biases have been omitted for clarity. Three-dimensional samples x are compressed
(projected) to one component z in the middle by the extraction part. The inverse
generation part reconstructs x̂ from z. The sample x̂ is usually a noise-reduced rep-
resentation of x. The second and fourth hidden layer, with four nonlinear units each,
enable the network to perform nonlinear mappings. The network can be extended to
extract more than one component by using additional nodes in the component layer in
the middle.

5.1 Standard auto-associative neural network

The nonlinear PCA (NLPCA), proposed by Kramer (1991), is based on a multi-layer
perceptron (MLP) with an auto-associative topology, also known as an autoencoder,
replicator network, bottleneck or sandglass type network. A good introduction to multi-
layer perceptrons can be found in Bishop (1995) and Haykin (1998).
The auto-associative network performs the identity mapping. The output x̂ is enforced
to equal the input x with high accuracy. This is achieved by minimising the square error
‖ x− x̂ ‖2.
This is no trivial task, as there is a ‘bottleneck’ in the middle, a layer of fewer nodes
than at the input or output, where the data have to be projected or compressed into a
lower dimensional space Z.
The network can be considered as two parts: the first part represents the extraction
function Φextr : X → Z, whereas the second part represents the inverse function, the
generation or reconstruction function Φgen : Z → X̂ . A hidden layer in each part enables
the network to perform nonlinear mapping functions.
In the following we describe the applied network topology by the notation [l1-l2-. . . - ln]
where li is the number of units in layer i: the input, hidden, component, or output
layer. For example, [3-4-1-4-3] specifies a network with three units in the input and
output layer, four units in both hidden layers, and one unit in the component layer, as
illustrated in Figure 5.2.
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5.2 Hierarchical nonlinear PCA

5.2 Hierarchical nonlinear PCA (h-NLPCA)

In order to decompose data in a PCA related way, linearly or nonlinearly, it is impor-
tant to distinguish applications where a pure dimensionality reduction is required from
applications where the identification and discrimination of unique and meaningful com-
ponents is of primary interest, usually referred to as feature extraction. In applications
of pure dimensionality reduction, with clear emphasis on noise reduction and data com-
pression, only a subspace with high descriptive capacity is sought. How the individual
components form this subspace is not particularly constrained and hence does not need
to be unique. The only requirement is that the subspace explains, in the mean square
error (MSE) sense, as much information as possible. Since the individual components
which jointly explain this subspace, are treated equally by the algorithm without any
particular order or differential weighting, this is referred to as symmetric type of learn-
ing. This also includes the nonlinear PCA performed by the standard auto-associative
neural network which is therefore referred to as s-NLPCA in the following.
By contrast, hierarchical nonlinear PCA (h-NLPCA), as proposed by Scholz and Vigário
(2002), provides not only the nonlinear subspace spanned by the optimal set of compo-
nents, it also enforces the nonlinear components to have the same hierarchical order as
the linear components in standard PCA. The h-NLPCA can therefore be seen as a true
and natural nonlinear extension to PCA.
Hierarchy, in this context, is explained by two important properties: scalability and sta-
bility. Scalability means that the first n components explain as much as possible of the
variance in a n-dimensional subspace of the data. Stability means that the i-th compo-
nent of an n component solution is identical to the i-th component of an m component
solution (m 6= n).
A hierarchical order essentially yields uncorrelated components. Nonlinearly, this even
means that h-NLPCA is able to remove complex nonlinear correlations between com-
ponents. This can already yield useful and meaningful components as will be shown
in section 5.6 when applied to molecular data. Additionally, by scaling the nonlinear
uncorrelated components to unit variance, we obtain a complex nonlinear whitening
(sphering) transformation as shown in Scholz and Vigário (2002). This is a useful pre-
processing step for applications such as regression, classification, or blind separation of
sources. Since a nonlinear whitening removes the nonlinearities in the data, the subse-
quently applied methods can then still be linear. This is particularly important for ICA
which can be extended to a nonlinear approach by using a nonlinear whitening.
How can we achieve such a hierarchical order? The naive approach to simply sort the
symmetrically treated components by variance does not yield the required hierarchi-
cal order, neither linearly nor nonlinearly. In the simple linear case, we can achieve
hierarchically ordered components by a sequential (deflationary) approach in which the
components are successively extracted, one after the other, on the remaining variance
(error) of the previous ones. However, this does not work sufficiently well in the non-
linear case. The remaining variance cannot be considered regardless of the nonlinear
mapping.
However, there are two strongly related ways to introduce hierarchy constraints to the
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Figure 5.3: Hierarchical auto-associative neural network. The standard auto-
associative network is hierarchically extended to perform the hierarchical NLPCA
(h-NLPCA). In addition to the whole [3-4-2-4-3] network (grey+black), there is a
[3-4-1-4-3] subnetwork (black) explicitly considered. The component layer in the mid-
dle has either one or two nodes which represent the first and second components respec-
tively. In each iteration the error E1 of the subnetwork with one component and the
error of the total network with two components are estimated separately. The network
weights are then adapted jointly with regard to the total hierarchic error E = E1+E1,2.

component space. In much the same way as in linear PCA, one is to force the i-th com-
ponent to account for the i-th highest variance projection. Another strategy would be
to search in the original data space for the smallest mean squared reconstruction error
while using the first i components. The former may be harder or even impossible to solve
than the latter, due to boundary conditions. Hence, we will present a learning strategy
that focuses on the reconstruction mean square error (MSE), E = 1

dN

∑N
n

∑d
k(x

n
k − x̂n

k)2,
where x and x̂ are, respectively, the original and the reconstructed data. N is the num-
ber of samples, d is the dimensionality. For simplicity, we first restrict our discussion to
the case of a two-dimensional component space. All conclusions can be generalised to
any other dimensionality.

The hierarchical error function

E1 and E1,2 are the mean reconstruction errors when using only the first or both the
first and the second component respectively. In order to perform the h-NLPCA, we
have to impose not only a small E1,2 (as in s-NLPCA), but also a small E1. This can
be done by minimising the hierarchical error:

EH = E1 + E1,2

To find the optimal network weights for a minimal error in the h-NLPCA as well as in
the standard symmetric approach, the conjugate gradient descent algorithm (Hestenes
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Star data EMG data

Figure 5.4: Hierarchical nonlinear PCA (h-NLPCA) applied to a star spectral data set
and to electromyographic (EMG) recordings. Both data sets show a clear nonlinear
behaviour. The first three nonlinear components are visualised in the space of the
first three PCA components. The grids represent the new coordinate system of the
component space. Each grid is spanned by two of the three components while the third
is set to zero.

and Stiefel, 1952; Press et al., 1992) is used. At each iteration, the single error terms E1

and E1,2 have to be calculated separately. This is performed in the standard s-NLPCA
way by a network either with one or with two units in the component layer. Here, one
network is the subnetwork of the other, as illustrated in Figure 5.3. The gradient ∇EH

is the sum of the individual gradients ∇EH = ∇E1 + ∇E1,2. If a weight wi does not
exist in the subnetwork, ∂E1

∂wi
is set to zero.

To regularise the network, a weight decay term is added E = EH + ν
∑

i w
2
i . In most

experiments, ν = 0.001 was a reasonable choice. Furthermore, to achieve more robust
results, the weights of the nonlinear layer were initialised such that the sigmoidal
nonlinearities worked in the linear range. It corresponds to start the h-NLPCA network
with the simple linear PCA solution.
The hierarchical error function can be easily extended to k components (k ≤ d):

EH = E1 + E1,2 + E1,2,3 + . . . + E1,2,3,...,k

The h-NLPCA given by EH can then be interpreted as follows: we search for a k-di-
mensional subspace of minimal mean square error (MSE) under the constraint that
the (k − 1)-dimensional subspace is also of minimal MSE. This is successively extended
such that all 1, . . . , k dimensional subspaces are of minimal MSE. Hence, each subspace
represents the data with regard to its dimensionality best.
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5 NLPCA — nonlinear PCA

Application of h-NLPCA

To illustrate the performance of the hierarchical approach, we applied h-NLPCA to two
separate data sets (Scholz and Vigário, 2002). The first consists of 19-dimensional spec-
tral information, gathered from 487 stars, see Stock and Stock (1999) for more details
on this data set. The second data set is based on electromyographic (EMG) recordings
for different muscle activities (labelled as 0, 10, 30, 50 and 70% of maximal personal
strength). The one-dimensional EMG signal is then embedded into a d-dimensional
space and analysed as a recurrence plot (Webber Jr. and Zbilut, 1994). The final data
set then consists of 10 recurrence qualification analysis (RQA) variables for 35 sam-
ples (the 5 force levels for each of the 7 subjects). For more details on this data set,
see Mewett et al. (2001).
The nonlinear components are extracted by minimising the hierarchical error function
EH = E1 + E1,2 + E1,2,3. The auto-associative mappings are based on a [19-30-10-30-19]
network for the star spectral data and a [10-7-3-7-10] network for the EMG data.
Figure 5.4 shows that both data sets have clear nonlinear characteristics. While in the
star data set the nonlinearities seem moderate, this is clearly not the case for the EMG
data. Furthermore, in the EMG plotting, it seems that most of the variance is explained
by the first two components. The principal curvature given by the first nonlinear compo-
nent was found to have a clear relation to the force level, see Scholz and Vigário (2002).
The second component is not related to the force. Since the force information seems to
be completely explained by the first component, the second component might be related
to another, so far unknown physiological factor.

5.3 Inverse model of nonlinear PCA

In this section we propose nonlinear PCA as an inverse problem. While the classical
forward problem consists of predicting the output from a given input, the inverse problem
involves estimating the input which matches best a given output. When the model or
data generating process is not known, this is referred to as a blind inverse problem.
In the simple linear case PCA can be considered equally well either as a forward or an
inverse problem depending on whether the desired components are predicted as outputs
or estimated as inputs by the respective algorithm. Sanger’s learning rule (Sanger, 1989)
is an example for a forward model of PCA. The auto-associative network models both
the forward and the inverse model simultaneously. The forward model is given by the
first part, the extraction function Φextr : X → Z. The inverse model is given by the
second part, the generation function Φgen : Z → X̂ . Even though a forward model is
appropriate for linear PCA, it is less suitable for nonlinear PCA. Nonlinear PCA is not
always a one-to-one mapping. Two identical samples xn may correspond to distinct
component values zn as illustrated for the self-intersection in Figure 5.6, left graph. The
two identical samples might, for example, belong to different times, 24h and 48h, which
represent both the same physiological state in a diurnal rhythm of a day and night
experiment.
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Figure 5.5: The proposed inverse NLPCA model. Only the second part of the auto-
associative network (Figure 5.2) is needed, as illustrated by a [1-4-3] network (black).
This generation part represents the inverse mapping Φgen which generates or recon-
structs higher-dimensional samples x from their lower dimensional component repre-
sentations z. These component values z are now unknown inputs that can be estimated
by propagating the partial errors σ back to the input layer z. This is equivalent to the
illustrated prefixed input layer (grey), where the weights are representing the compo-
nent values z. The input is then a (sample x sample) identity matrix I. For the 4th
sample (n=4), as illustrated, all inputs are zero except the 4th, which is one. On the
right, the second element x4

2 of the 4th sample x4 is missing. Therefore, the partial
error σ4

2 is set to zero, identical to ignoring or non-back-propagating. The parameter
of the model can thus be estimated even when there is missing data.

To model nonlinear PCA as a forward extraction process, X → Z, is therefore difficult
and sometimes even impossible. Even for more moderate nonlinearities, it is easier to
model the inverse mapping Φgen from components z to data x, since it matches better
the assumed generative model. This means, as explained in the ICA chapter, that given
the values of all internal or external factors (e.g., the exact time), the corresponding
molecular response (e.g., all metabolite concentrations) can be functionally derived. The
opposite extraction mapping X → Z might be functionally very complex or may even
exist only as one-to-many mapping which cannot be modelled by a single function.
Consequently, modelling the inverse mapping Φgen : Z → X̂ alone, provides a number of
advantages: we only need to optimise the second part of the auto-associative network,
which is more efficient than using both parts. Also, we model the natural process, which
has generated the observed samples, hence we can be sure that such a function exists,
which is not always the case for the extraction model. And, most importantly, we can
extend such an inverse NLPCA model to be applicable to incomplete data sets. This is
possible, since the sample data are only used to determine the error of the model output,
which can be estimated even with missing values in the data set. By contrast, using the
data set as input, as done in a standard forward model, a complete data matrix would
usually be necessary.
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5 NLPCA — nonlinear PCA

The challenge is that the desired components now are unknown inputs. Now, the blind
inverse problem is to estimate both the inputs and the parameters of the model by
only given outputs. This makes sense only with the additional constraint of a lower
dimensional input.
For this approach Hassoun and Sudjianto (1997) optimised the weights and the inputs in
two alternate steps by minimising an error function which is equivalent to the maximum
likelihood. A similar approach was also used by Oh and Seung (1998). As the inputs can
be represented by weights, we propose to optimise the inputs and weights simultaneously.
The same network architecture is also used by Valpola for a nonlinear factor analysis
(NFA) and a nonlinear independent factor analysis (NIFA) (Lappalainen and Honkela,
2000; Honkela and Valpola, 2005).
In the proposed inverse NLPCA approach, one single error function is used to optimise
both the model weights w and the components as inputs z simultaneously. The model
is applicable to incomplete data sets and can be used in a hierarchical mode.

The inverse network model

Inverse NLPCA is given by the mapping function Φgen, which is represented by a multi-
layer perceptron (MLP), as illustrated in Figure 5.5. The output x̂ depends on the input
z and the network weights w ∈ W3,W4.

x̂ = Φgen(w, z) = W4g(W3z)

The nonlinear activation function g (e.g., tanh) is applied element-wise. Biases are not
explicitly considered, however, they can be included by introducing an extra unit, or
input, with activation set to one.
The aim is to find a function Φgen which generates data x̂ that approximate the observed
sample data x by a minimal square error ‖ x− x̂ ‖2. Hence, we search for a minimal error
depending on w and z: min

w,z
‖ x− Φgen(w, z) ‖2. Both the lower dimensional component

representation z and the model parameter w are unknown and can be estimated by
minimising the mean square reconstruction error:

E(w, z) =
1

dN

N∑
n

d∑
i

xn
i −

h∑
j

wijg

(
m∑
i

wjkz
n
k

)2

.

The dimensionality d is given by the number of metabolites, N is the number of samples.
The error can be minimised by a gradient optimisation algorithm, e.g., conjugate gradient
descent (Hestenes and Stiefel, 1952; Press et al., 1992). The gradients are obtained by
propagating the partial errors σn

i back to the input layer. For the input gradients it is
simply one step further than usual. The gradients of the weights wij ∈ W4, wjk ∈ W3
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Figure 5.6: Approximation of a circular (left) and a helical (right) structure by the
proposed inverse NLPCA model. The noisy data x (dots ‘·’) are projected onto a one-
dimensional nonlinear component (line). The projection or de-noised reconstruction x̂
is marked by a circle ‘◦’. Note that an inverse model is able to extract self-intersecting
components (left).

and inputs zn
k are the partial derivatives:
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For the bias, additional weights wi0 and wj0 can be used, with associated constants
z0 = 1 and g(a0) = 1.
The weights w and the inputs z can be optimised simultaneously by considering (w, z)
as one vector to optimise with given gradients. This would be equivalent to an approach
where an additional input layer is representing the components z as weights, and new
inputs are given by a (sample x sample) identity matrix, as illustrated in Figure 5.5.
However, this layer is not needed for implementation. The purpose of the additional
input layer is only to explain that the inverse NLPCA model can be converted to a
conventionally trained multi-layer perceptron, with known inputs and simultaneously
optimised weights, including the weights z, representing the desired components. Hence,
an alternating approach as done by Hassoun and Sudjianto (1997) is not necessary.
Besides a more efficient optimisation, it also avoids the risk of oscillations during training
in an alternating approach.
A disadvantage of such an inverse approach is that there is no mapping function X → Z
required for new data x. However, we can approximate the mapping by searching for an
optimal input z to a given new sample x. For that, the network weights w have to be set
constant and the input z has to be optimised to minimise the square error ‖ x− x̂(z) ‖2.
This is only a line search (in case of one component) or low dimensional optimisation
with given gradients, efficiently done by a gradient optimisation algorithm.
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5 NLPCA — nonlinear PCA

The inverse NLPCA is able to extract components of higher nonlinear complexity than
the standard NLPCA, even self-intersecting components can be modelled. This is shown
in Figure 5.6 for a circular structure in two dimensions, generated from a uniformly
distributed factor t (the angle) and a helical structure embedded in three dimensions,
generated from a Gaussian distributed factor t. For the uniformly distributed 100 circular
data points (plus noise), a [1-3-2] network is trained in 3,000 iterations. The noisy helical
structure of 1,000 Gaussian distributed data points is modelled with a [1-8-3] network
in 10,000 iterations.
The inverse NLPCA is not restricted to one component. It can be extended to m
components by increasing the number of units in the input layer, the component layer z,
to m. By using the hierarchical error function, proposed in section 5.2, the nonlinear
components 1, . . . ,m can be extracted hierarchically in order to achieve a hierarchical
nonlinear PCA as an inverse model as well.

5.4 Missing value estimation

A common problem in molecular data analysis is the absence of numerous values in the
data set. The reason might either be that the particular value could not be measured or
had been discarded due to high inaccuracy or low reliability. Since usually the number
of samples is small and the proportion of affected samples is high, we cannot simply
discard those incomplete samples from the data set. Instead, we have to find a way to
estimate the missing values or to adapt our analysis method to be applicable to incom-
plete data. A common approach would be to replace each missing value by the mean
or median over the available values of the corresponding variable. However, such an ap-
proach considers each variable separately and therefore can lead to poor results (Scholz
et al., 2005). More successful approaches attempt to use all information available from
the incomplete data set. This includes essentially the relations or dependencies among
variables. There are many methods for estimating missing values (Little and Rubin,
2002). Some good approaches are based on maximum likelihood in conjunction with an
expectation-maximisation (EM) algorithm (Ghahramani and Jordan, 1994). To analyse
incomplete data, it is common to estimate the missing values first. The completed data
set is then used in a subsequent analysis step.
Such separation of missing value estimation from the final analysis, however, can lead
to problems when distinct or even incompatible assumptions are used in the two steps.
Again, this concerns essentially questions about the optimal distance measure and im-
portance in the data structures. It is crucially important in unsupervised techniques
where the emphasis in general is to investigate the data structure under some specific
criteria. One missing data approach might, for example, be optimised to estimate mis-
sing values in the mean square error sense, whereas in the final approach relative changes
or correlation coefficients might be of interest. Or, concerning our approach, estimating
missing values by a linear technique assumes a linear data structure. The final nonlinear
analysis, however, is based on the opposed assumption of nonlinearly structured data.
In missing value estimation, we modify the data structure by adding new values. Since
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these values depend critically on our assumptions, our assumptions may become real in
the sense that the data move to a linear structure, by applying a linear technique, even
if they were originally nonlinear.
Estimating missing data can therefore not always be seen independently from the sub-
sequent analysis. The best missing data technique is that which estimates the missing
values with respect to the final purpose of the analysis. Our strategy is therefore, in-
stead of estimating missing values first, to adapt the analysis technique such that it is
applicable to incomplete data sets. Thus, we focus on detecting nonlinear components
from incomplete data sets, so in our approach missing values are not estimated a priori.
However, once the nonlinear mapping is effectively modelled, the missing values can then
be estimated as well. This is shown for an artificial data set and for experimental data in
the following sections. Estimation results were compared with results of state-of-the-art
estimation techniques. There are two PCA based linear techniques: the recently pub-
lished Bayesian missing value estimation method for gene expressions (Oba et al., 2003)
which is based on Bayesian principal component analysis (BPCA) (Bishop, 1999) and
probabilistic PCA (PPCA) (Verbeek et al., 2002) based on Roweis et al. (2002). Fur-
thermore, there are the k-nearest neighbour based approach KNNimpute (Troyanskaya
et al., 2001) and a nonlinear estimation by self organizing maps (SOM).

5.4.1 Modified inverse model

The inverse NLPCA model can be extended to be applicable to incomplete data sets in
the following way (Scholz et al., 2005). If the ith element xn

i of the nth sample vector xn

is missing, the partial error σn
i is set to zero before back-propagating, hence this error

is ignored, it has no contribution to the gradients. Thus, the nonlinear components are
extracted by using all available observations. With these components the original data
can be reconstructed, including the missing values. The network output x̂n

i gives the
estimation of the missing element xn

i .
The same approach can be used to weight each measured value differently. This might
be of interest when for each value an additional probability value (p-value) is available.
Each partial error σn

i can then be weighted σ̂n
i = p ∗ σn

i before back-propagating. The
contribution to the gradients can thereby be decreased. However, even though an in-
dividual weighting may be important, e.g., for gene expression data, our emphasis has
been on the missing data approach so far.

5.4.2 Missing data: artificial data

Even though an artificial data set does not reflect the whole complexity of real biological
data, it is useful to illustrate the problem of missing data and hence can give a better
understanding of how the data are handled by various methods.
The inverse NLPCA approach was therefore first applied to an artificial data set and
the results were compared with other missing value estimation techniques, the linear

45



5 NLPCA — nonlinear PCA

−1
0

1

−1

0

1

−1

0

1

 NLPCA.inv

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

original angle t

no
nl

in
ea

r c
om

po
ne

nt

 NLPCA.inv

−1
0

1

−1

0

1

−1

0

1

 SOM

−1
0

1

−1

0

1

−1

0

1

 KNNimput

−1
0

1

−1

0

1

−1

0

1

 BPCA

−1
0

1

−1

0

1

−1

0

1

 PPCA

Figure 5.7: Artificial data were generated to test different missing value algorithms.
The samples form a helical loop. From each of the three-dimensional samples, one value
is removed and then estimated by each missing value algorithm. The known complete
samples are plotted as dots ‘·’ and the estimated values as circle ‘◦’. Above: the inverse
NLPCA is able to extract the nonlinear component from this highly incomplete data
set, and hence it can give a very good estimation of the missing values. SOM also gives
a reasonably good estimation, but the linear approaches BPCA and PPCA, as well as
the k-nearest neighbour based approach KNNimpute, fail in this particular nonlinear
case, see also Table 5.1.

techniques BPCA1 and PPCA2, the k-nearest neighbour based approach KNNimpute3,
and the nonlinear SOM4. The data x lie on a one-dimensional manifold (a helical loop)
embedded in three dimensions, plus Gaussian noise η of standard deviation σ = 0.05,
see Figure 5.7. 1,000 samples x were generated from a uniformly distributed factor t
over the range [-1,1], t represents the angle:

x1 = sin(πt) + η
x2 = cos(πt) + η
x3 = t + η

From each three-dimensional sample, one value is randomly removed and regarded as
missing. This gives a high missing value rate of 33.3 percent. However, if the nonlinear
component (the helix) is known, the estimation of a missing value is exactly given by the
two other coordinates, except at the first and last position of the helix loop, where in

1 http://hawaii.aist-nara.ac.jp/˜shige-o/tools/
2 http://carol.science.uva.nl/˜jverbeek/software/
3 http://smi-web.stanford.edu/projects/helix/pubs/impute/
4 http://www.cis.hut.fi/projects/somtoolbox/
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5.4 Missing value estimation

MSE of missing value estimation
noise noise-free

NLPCA.inv 0.0021 0.0013
SOM 0.0405 0.0384
KNNimpute 0.4435 0.4429
BPCA 0.4191 0.4186
PPCA (k=3) 0.4354 0.4347
mean 0.4429 0.4422

Table 5.1: Mean square error (MSE) of different missing value estimation techniques,
applied to the helical data (Figure 5.7). The inverse NLPCA model provides a very
good estimation of the missing values. Although the model was trained with noisy
data, the noise-free data were better represented than the noisy data, confirming the
de-noising ability of the model.
Also SOM gives a good estimation. The linear techniques BPCA and PPCA as well
as KNNimpute fail to achieve good results. Their results are similar to the results of
naive substitution by the mean over the residuals of one variable.

the case of missing vertical coordinate x3, the sample can be assigned either to the first
or to the last position. Consequently, there are two possible optimal solutions. Missing
value estimation is not always unique in the nonlinear case.
In Figure 5.7 and Table 5.1 it is shown that even if the data sets are incomplete for
all samples, the inverse NLPCA model is able to detect the nonlinear component and
provides a very accurate missing value estimation. The SOM also achieves a reasonably
good estimation, but the linear approaches BPCA and PPCA as well as the k-nearest
neighbour based approach KNNimpute fail in this nonlinear data set case.

5.4.3 Missing data: metabolite data

The performance of the missing value estimation techniques was also assessed by using a
real experimental data set. For that we used a completely available set of 140 metabolites
from a cold stress experiment, see section 5.6 for more details. Different percentages of
values were randomly removed and regarded as missing. A good overall missing value
estimation is obtained for up to 50 percent of the missing values. This unexpectedly
high tolerance might be caused by the high redundancy in the data, possibly due to
high connectivity or dependency among the metabolites. By comparing the different
techniques, we first found that BPCA gives the best average over all 140 metabolites,
see Figure 5.8. But rather than in returning a good average we are interested in a
good estimation for the most important metabolites. As our data values are ratios, see
section 5.6.1, a high variance indicates an important metabolite. Therefore, we compared
the performance for the first n metabolites of highest variance which mostly also show
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Figure 5.8: From an experimental data set of completely available 140 metabolites,
different percentages of values were removed randomly and estimated by different mis-
sing value algorithms and repeated 100 times. The median of the mean square error
(MSE) over all runs is plotted. An estimation by mean over the residual values pro-
duces the worst result. It is used as a base line. BPCA performs best. However, this
is only the case when all 140 metabolites are considered, including the large number of
non-relevant metabolites with small relative variances.

a strong nonlinear behaviour. Now the results are different, see Figure 5.9. The inverse
NLPCA and SOM, which perform almost equally well, provide the best result for the
first five most important metabolites, and perform almost equally well as PPCA for the
remaining metabolites.

5.4.4 Missing data: gene expression data

In order to obtain a fair and comprehensive comparison, we also tested the performance
of the missing data estimation by using a larger set of gene expression data obtained from
the same cold stress experiment. The data were again transformed to log2 ratios, relative
to the median of control samples at time zero. In total, 16,996 genes were reduced to
1,000 of highest log ratio variance. These genes are expected to be most important, as
they show the largest relative expression change. Twenty-one samples were measured at
seven different time points.
Again, instead of a good averaged missing value estimation over all genes, we are inter-
ested in a good estimation of the most important genes, those of highest relative variance.
Therefore, the cumulative mean square error (MSE) for the first 30 genes of highest ratio
variance is shown (Figure 5.10). The results differ from those on the metabolite data
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Figure 5.9: In contrast to Figure 5.8 we have considered only the top n metabolites
of highest variance, n=1,...,20, at a fixed missing value rate of 10 %. As the data
set contains ratios, metabolites of high variance are assumed to be important. The
results differ from those in Figure 5.8. Here, BPCA does not perform satisfactorily,
but still better than KNNimpute (k=10 neighbours). The best result of PPCA was
given with k=5 components. However, at the first five metabolites, this result could
still be outperformed by the nonlinear techniques, the inverse NLPCA and SOM, which
perform almost equally well. All techniques show an abrupt rise at the 9th metabolite
(citramalic acid), caused by badly distributed data.

set in Figure 5.9. All methods give quite similar but significantly better results than
naive substitution by the mean of the remaining values of each gene. However, BPCA
which was developed for this kind of high-dimensional data sets, gave the best result
for both the averaged estimation (not shown) and the estimation for the first n genes
as shown in Figure 5.10. BPCA is successful because it uses principal components in
the lower dimensional data space given by the small number of samples and not by the
genes. Similar results can therefore also be obtained by the similar technique of PPCA
when applied to the transposed data set. However, the advantage of BPCA is that no
parameter k, the number of used components, has to be chosen as it is necessary in
PPCA. The results of NLPCA were also improved when applied to the transposed ma-
trix, and by using more than one nonlinear component (k=4). However, there might be
no advantage of a nonlinear technique applied to the transposed data set, as a nonlinear
data structure in gene data space does not necessarily lead to a nonlinear structure in
sample space (where genes are data points).
Consequently, for estimating missing values in large gene expression data sets, BPCA is a
good choice. In data sets with a smaller number of variables, as is typical for metabolite
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Figure 5.10: Missing data algorithms applied to gene expression data of 1,000 genes
with 10 % randomly removed values. The results differ from those on metabolite
data in Figure 5.9. Again, we consider the most important genes of highest ratio
variance. The cumulative mean square error (MSE) is given for the first 30 genes
of highest ratio variance. All algorithms achieve significantly better results than the
naive substitution by the mean. The best result, though, is given by BPCA. Right:
the results of most methods can be improved when applied to the transposed matrix.
PPCA with k=5 components is then almost as good as BPCA which was applied alone
without transposition, since it already has an internal transposition.

or protein data sets, other methods are more suitable. These include nonlinear tech-
niques, such as NLPCA or SOM, when the data are nonlinearly distributed. Both gene
expression and metabolite data are available at http://nlpca.mpimp-golm.mpg.de.
However, our main objective is to detect nonlinear components in incomplete data sets.
As these components should explain the experimental factors in the data space given by
genes (where samples are data points), a transposed matrix is of no use.

5.5 Validation

In order to obtain reliable components, we have to validate the complexity of our model.
This is even of much greater importance when we search for nonlinear components
in molecular data with many dimensions (metabolites) and few samples. When the
model has too little flexibility, it cannot fit the full complexity of the real process, e.g.,
nonlinear processes cannot be modelled sufficiently by linear methods. A model of too
much flexibility, on the other hand, can even fit the nonrelevant noise in the data and
hence gives a poor approximation of the original process. This is referred to as over-
fitting problem, illustrated in Figure 5.11. The aim is to find a model whose complexity
is neither too small nor too large.
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(A) (B) (C)
Weight decay and Self-regularisation additional component

number of hidden units

no weight-decay, ν = 0 ν = 0.001 ν = 0.00001
[1-10-2] network [1-4-2] network [2-4-1-4-2] network

ν = 0.05 ν = 0.001 ν = 0.00001
[1-4-2] network [2-4-1-4-2] network [2-4-2-4-2] network

Figure 5.11: Network-regularisation. Column-wise illustrated is the effect of different
complexity parameters. Shown is always a poor regularisation (above) and a good
regularisation (below) with respect to the particular parameter. (A) The number of
hidden units is decreased from ten to four and a weight-decay term is added to the
error function with a strong influence of ν = 0.05. (B) The inverse part alone (above)
is more flexible than the entire auto-associative network (below) by the use of identical
parameters. (C) The first component is regularised by hierarchically extracting an
additional component.
The data samples x ’·’ are generated by a square function and additive Gaussian noise
with standard deviation σ = 0.4. The projection x̂ onto the first nonlinear component
is marked by a circle ’◦’.

5.5.1 Model complexity

To control the complexity of the auto-associative network, different model parameters
can be adjusted, as illustrated in Figure 5.11. This includes standard methods for neural
networks such as the increase or decrease of the number of hidden units and the use of
weight-decay (Hinton, 1987) as an additional regularisation term in the error function.
Additionally, auto-associative neural networks have a kind of self-regularisation, caused
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Figure 5.12: Illustrated is the test error of an over-fitted (B) and a well-fitted (C) model.
(A) Ten samples were originally generated from a quadratic function (dotted line) plus
noise. When we use a nonlinear PCA model of high complexity, a clearly over-fitted
nonlinear component is obtained (solid line). However, when we validate the over-fitted
model with an independent test data set (B), it gives a better (smaller) test error than
by using the ideal model, the original model from which the data were generated (C).
Thus, in contrast to supervised learning, such unsupervised models cannot be validated
by using a test set, as in cross-validation. With increasing complexity, an unsupervised
model is able to provide a curved component with increasing data space coverage, such
that even test data can be projected onto the curve by a decreased distance (error).

by the fact that for each mapping function, the inverse function has to be estimated as
well. A complex function usually has a much more complex inverse function or such
an inverse function does not even exist. The auto-associative network is therefore con-
strained to keep the functions as simple as possible. When the inverse part is optimised
alone, regularisation is then of greater importance. A similar effect is observed when
extracting nonlinear components in a hierarchical order, where subsequent components
are extracted in respect to the previous components. A complex first component would
strongly increase the complexity of the second or later components. Thus, the network
is constrained to generate very smooth first components.

5.5.2 The test set validation problem

A common approach to test the generalisation performance of a model is to use an in-
dependent test set, either by using a completely new data set if available, or when the
number of samples is limited, by performing cross-validation by repeatedly splitting the
original data into a training and test set. The motivation for this is that only the model,
which represents the underlying biological process best, can provide optimal results on
new, for the model previously unknown, data.
While test set validation is a standard approach in supervised applications, it suffers
from the lack of a known target in unsupervised techniques. Unsupervised models can
therefore not be validated by using a test set. Higher complex models, that over-fit the
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original training data, can in principle be able to meet the specific criteria on test data
better than it would be possible by the true or original model. This is illustrated in
Figure 5.12 for 10 training and 200 test samples generated from a quadratic function
plus Gaussian noise of standard deviation σ = 0.4. The test error refers to the mean
square reconstruction error of the test data set on both an over-fitted and a well-fitted
ideal model. Geometrically, the error is given by the squared distance between the data
points and their projection onto the curve. Given the same test data, the ideal model
results in an error almost three times larger than that of the overly complex model that
over-fits the data.
To understand this contradiction, we have to distinguish between an error in supervised
learning and the fulfilment of specific criteria in unsupervised learning. Test set valida-
tion works well as long as we measure the error as a distance or difference to a required
target (e.g., class labels) which is the typical task in supervised learning. By contrast, in
unsupervised learning the target (e.g., the correct component) is unknown, instead we
search for a model that satisfies a specific criterion. Sometimes we even use supervised
models to perform unsupervised analysis such as the multi-layer perceptron in nonlinear
PCA. The error then means, in this unsupervised context, simply how well our criterion
is achieved. Higher complex models can usually better satisfy this criterion, even on
test data, as shown in Figure 5.12. When the only criterion is, for example, to project
the data by the shortest way onto a curve, models of large flexibility can achieve a good
performance on both the training and the test data. In addition to the criterion, we
therefore have to restrict the complexity or flexibility of the model by a suitable regu-
larisation. Hence, we have to find a way to determine the optimal model complexity,
but we cannot use a test data set for the purpose of unsupervised validation.
For unsupervised techniques, instead of a test error, we can provide confidence in the
results by determining the stability or robustness under slightly different variants of
the original data set. A common method is to use the resampling technique bootstrap
(Efron and Tibshirani, 1994). The idea behind this is that the result should not vary
significantly when one or a few samples are discarded or if others count twice or more.
Bootstrap can, for example, be used to estimate the reliability of independent compo-
nents of ICA as proposed and successfully applied by Meinecke et al. (2002). Another
validation approach for ICA, proposed by Harmeling et al. (2004), is to corrupt the data
by a small amount of Gaussian noise. The motivation is that reliable components should
be robust and stable against small random modification of the data.
Stability of linear components can then be determined by measuring the variation in
the direction of specific components when applied to different resampled data sets or
different noise-injections. Comparing nonlinear components, by contrast, is no trivial
task. Curves can be explained by many properties concerning curvature, position, or
the parameter of the nonlinear model that generates the curve. However, instead of a
problematic comparison of these properties, we propose a new validation approach which
does not concern stability and robustness of different results. Instead, we validate our
model by measuring the performance of missing data estimation on a test set. It is mo-
tivated by the idea that only the model which best explains the real biological process,
is able to give a good missing value estimation on new test data.
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Figure 5.13: Validation. An artificial data set was used to determine the optimal
complexity of the nonlinear PCA model. The complexity of the network is varied by
using different weight-decay coefficients ν, while all other model parameters are kept
constant. A network of low complexity which is almost linear (left) results in a high
error as expected for both the training and the test data. However, when the model
becomes increasingly complex, there is no increase in test error, even a slight decrease
instead. This is contradictory to our knowledge from supervised learning, where the test
error becomes worse when the model over-fits. However, when the validation is based
on the missing data estimation performance, we obtain the intuitively expected result
that the error becomes worse again with increasing model complexity. The optimal
complexity is given by a clear minimum in the middle of the performance curve.

5.5.3 A missing data approach in model validation

A model that becomes increasingly complex is able to explain a more complicated struc-
ture in the data space. Even for new test samples, it is more likely to find a short
projecting distance (error) onto a curve which covers the data space in a complete fash-
ion than by a curve of moderate complexity (Figure 5.12). The problem, however, is that
we can project the data onto any position on the curve. There is no further restriction
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in pure test set validation. In missing data estimation, by contrast, the position on the
curve is fixed, given by the remaining available values of the same sample. When a value
is artificially removed and regarded as missing, we get an exact target. Thus, we changed
the unsupervised validation problem into a supervised regression validation problem. We
now test the predictive performance for an arbitrarily chosen value, given all other values
of the same sample. This is done in any combination such that we obtain an averaged
predictive error over values from all variables. Only the model which approximates the
original process best, is therefore able to estimate missing values at highest accuracy.
Even though missing value estimation is sometimes not unique in the sense that multiple
distinct but still valid solutions may exist, it is, in general, a negligible problem, since it
rarely appears in higher dimensions of large redundancy as typical for molecular data.
Since our nonlinear PCA method is able to estimate missing values, we can now use this
property to validate the complexity of our model. The performance was measured by
mean square error between a randomly removed value and its estimation by the nonlin-
ear PCA model. This was done 100 times with newly generated data each time. The
median over all 100 mean square errors was taken as an ultimate performance measure
(Figure 5.13). The data consists of 20 training and 1,000 test samples, artificially gen-
erated from the same helical function as in Section 5.4.2 and additive Gaussian noise of
standard deviation ν = 0.2. A [1-10-3] network architecture was optimised in 5,000 iter-
ations by using the conjugate gradient descent algorithm. The complexity of the model
was changed by varying the impact of the weight-decay regularisation term in the error
function.
The result, as shown in Figure 5.13, is that the test error does not become worse with
increasing complexity, instead, it becomes even slightly better. This confirms again that
even very complex and flexible nonlinear PCA models can achieve good performance on
test data. Thus, there is no possibility to determine the optimal model complexity. The
missing value validation approach, by contrast, provides a nice performance curve where
the optimal complexity is shown by a clear minimum.
The true generalisation error in such an unsupervised technique is the missing value
estimation error and not the classical test set error. The missing value approach can
be seen as an adaptation of the standard test set validation to be applicable in unsu-
pervised learning. It can easily be used in a cross-validation manner, in the case of a
limited number of samples.
In contrast to robustness and stability validation approaches in ICA, the missing value
approach is able to validate a single model instead of a set of models, provided that
we have sufficient additional test data. This may be useful if we want to validate a
particular model such as the ultimately chosen.
The approach is not restricted to one-dimensional curves, it can be extended to curved
subspaces of higher dimensions, depending on the intrinsic dimension of the data.
The proposed validation approach is applicable only to models that can be addition-
ally used for missing value estimations. It is therefore another favourable aspect for
extending the nonlinear PCA to a missing data approach.
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Figure 5.14: The first three extracted nonlinear components are plotted into the data
space, given by the top three metabolites of highest variance. The grid represents the
new coordinate system after the nonlinear transformation. The principal curvature, the
first nonlinear component, shows the trajectory over time in the cold stress experiment.
The additional second and third component only represent the noise in the data, but
they are useful for controlling the complexity of the first component.

5.6 Application

Cold stress to cells can cause rapid changes in metabolite levels. Here, we have analysed
the temporal metabolite response to cold stress at 4 ◦C in the model plant Arabidopsis
thaliana, see also Scholz et al. (2005). The proposed inverse NLPCA model was applied
to these, partly incomplete, metabolite data (Kaplan et al., 2004). This gives us an
approximation of the mapping function from a given time point to the corresponding
metabolite response, and hence we obtain a ‘noise-free’ model of the biological cold
stress adaptation. For each time point ti we are able to identify the metabolites in
the order of importance, i.e. the metabolites are ranked by the relative change in their
concentration level at this specific time point. This procedure is analogous to a ranked
list of metabolites for one particular component in PCA or ICA.
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Figure 5.15: The extracted first nonlinear component represents the time factor. This
relation is shown by plotting the first component against the observed experimental
time.

5.6.1 Data acquisition

We used gas chromatography / mass spectrometry (GC/MS) to measure 497 metabolites
at seven different time points, at 0, 1, 4, 12, 24, 48, and 96 hours; time point zero
represents the control samples. Only 140 metabolites had available measurements for all
samples, these metabolites were used in the previous section 5.4.3 to test the different
methods for missing value estimation. In this experimental section the inverse NLPCA
is applied to all metabolites which have less than 1/3 missing values. After removing 109
metabolites, the final data set contains 388 metabolites (140 complete, 248 incomplete)
and 52 samples at seven different time points (7 - 8 samples per time point).
The data are transformed to log fold changes (log ratios). All measurements of each
metabolite xi = (x1

i , . . . , x
52
i )T are divided by the median of the control samples at time

point zero. Consequently, we are analysing ratios of metabolite concentrations with
respect to a control time point. The logarithm log2 is used to get symmetric changes:
xnormed = log2

(
x

median(xcontrol)

)
.

5.6.2 Model parameters

We used a network with a [3-20-388] architecture as inverse NLPCA model. This means
that we extracted three nonlinear components; 20 nonlinear hidden units were used to
perform the nonlinear transformation, and 388 metabolites were approximated. The
training was done in 300 iterations. To limit the complexity of the model we also added
a weight decay term to the error function Etotal = E+ν

(∑
i w

2
i +

∑
j z2

j

)
with ν = 0.001

and we extracted the second and third component in a hierarchical order (Scholz and
Vigário, 2002), which stabilises the first component.
The inverse NLPCA model yields a nonlinear transformation from three estimated non-
linear components to a 388 dimensional metabolite data set. This is shown in Figure 5.14
for the top three metabolites of highest variance.
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Figure 5.16: Time trajectory. Scatter plots of pair-wise metabolite combinations of
six selected metabolites of highest relative variance. The extracted time component
(nonlinear PC 1) is marked by a curve, which shows a strong nonlinear behaviour.

5.6.3 Results

The extracted first nonlinear component is directly related to the experimental time
factor, see Figure 5.15. This means that the global or main information, represented
by variance, is the metabolite change over time. This time trajectory clearly shows a
nonlinear behaviour. The time is represented by a component which describes a strongly
curved line in the original metabolite data space, as shown in Figure 5.16. It can be
regarded as a noise reduced representation of the cold stress response. The inverse model
gives us a mapping function R1 → R388 from a time point t to the response x of all
considered 388 metabolites x = (x1, ..., x388)T . Thus, we can analyse the approximated
response curves for each metabolite, shown in Figure 5.17. The cold stress is reflected
in almost all metabolites, however, the response behaviour is quite different. Some
metabolites have a very early positive or negative response, e.g., maltose and raffinose,
whereas other metabolites only show a moderate increase.
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Top 20 metabolites at time points t1 and t2
t1, approx. 0.5 hours t2, approx. 96 hours

q̂ metabolite q̂ metabolite
0.43 Maltose methoxyamine 0.24 [614; Glutamine ]
0.23 [932; Maltose] -0.20 [890;Dehydroascorbic acid dimer]
0.21 Fructose methoxyamine 0.18 [NA 293]
0.19 [925; Maltose] 0.18 [NA 201]
0.19 Fructose-6-phosphate 0.17 [NA 351]
0.17 Glucose methoxyamine 0.16 [NA 151]
0.17 Glucose-6-phosphate 0.16 L-Arginine
0.16 [674; Glutamine] 0.16 L-Proline
0.16 [NA 1] -0.14 Sorbitol
0.15 [NA 154] -0.13 4-Aminobutyric acid
0.14 [NA 341] 0.13 [612; Proline]
0.14 [NA 19] 0.12 [NA 42]
0.14 L-Arginine -0.11 [NA 118]
0.13 Glycine -0.11 [NA 37]
0.13 [NA 160] -0.11 [NA 70]
0.12 [949; Glucopyranose] 0.11 [529; Indole-3-acetic acid]
0.12 [NA 84] 0.10 [NA 210]

-0.12 [890;Dehydroascorbic acid dimer] 0.10 [NA 68]
0.12 [880; Maltose methoxyamine] -0.10 Galactinol
0.12 L-Glycerol-3-phosphate -0.10 [NA 117]

Table 5.2: The most important metabolites are given for an early time point t1 of
around 0.5 hours (interpolated) cold stress and a very late time point t2 of around 96
hours.
The metabolites are ranked by their influences q̂ at a specific time point, given by the
gradient of the nonlinear time component at this time point. As expected, maltose,
fructose and glucose show a strong early response to cold stress, however, even after 96
hours there are still some metabolites with significant changes in their level. Brackets
‘[. . . ]’ denote an unknown metabolite, e.g., [925; Maltose] denotes a metabolite with
high mass spectral similarity to maltose.

In classical PCA we can select the metabolites that are most important to a specific
component by a rank order of the absolute values from the corresponding eigenvector,
also termed loadings or weights. As the components are curves in nonlinear PCA, no
global ranking is possible. The rank order is different for different positions on the curved
component, hence it is different at different time points in our case. However, we can
give a rank order for each individual time point by computing the gradient qi = dxi

dt on
the nonlinear time curve at this time point. The rank order of the top 20 metabolites
is shown in Table 5.2 for an early time point t1 and a late time point t2. The influence
values q̂i are the l2-normalised gradients qi,

∑
i (q̂i)

2 = 1. The gradient curves over time
are shown in Figure 5.17. We found that even at the last time point of the experiment, 96
hours, there are still some metabolites with significant changes in their concentrations.
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Figure 5.17: The top three graphs show the different shapes of the approximated
metabolite response curves over time. (A) Early positive or negative transients, (B) in-
creasing metabolite concentrations up to a saturation level, or (C) a delayed increase,
and still increasing at the last time point. (D) The gradients represent the influence
of all metabolites at any time point, analogous to loading factors in PCA. High posi-
tive or high negative gradients at particular times relate to metabolites with strongly
changing levels. There is a strong early dynamic, which is quickly moderated, except
for some metabolites that are still not stable at the end. The top 20 metabolites with
the highest absolute gradients are plotted. The rank order for the marked early time t1
and late time t2 is given in Table 5.2.
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5.7 Summary

Nonlinear PCA (NLPCA) was proposed as an inverse model to be applicable to incom-
plete data sets. With this inverse NLPCA we were able to extract nonlinear (curved)
components from data sets with a large number of missing values. The idea behind
solving the missing data problem is that the model of missing data estimation has to
match the model of the final analysis. Our strategy was therefore to adapt nonlinear
PCA to be applicable to incomplete data instead of estimating the missing values in a
prior separate step.
Since the extracted components can be used, together with the model, to reconstruct
the original data, we can even estimate the missing values. The missing data estimation
performance is compared to other algorithms: Both nonlinear techniques, the inverse
nonlinear PCA and self organising maps (SOM), improved the missing value estimation
performance for the most important metabolites of the lower dimensional metabolite
data set. In the larger gene expression data set, the best missing data estimations were
obtained by BPCA and PPCA.
However, our goal was to identify nonlinear components. A question concerned here is
reliability. We have shown that validation by a test data set is of no use in such unsu-
pervised analysis. Driven by the idea that missing data can be best estimated with the
model that corresponds best to the real process, we proposed to validate the complexity
of a model by its missing data estimation performance.
Nonlinear PCA was applied to a time course of metabolite data from a cold stress exper-
iment on the model plant Arabidopsis thaliana. The detected first nonlinear component
was directly related to the experimental time factor. Thus, the inverse nonlinear PCA
model gives us the continuous metabolite response over the time frame of the experi-
ment. The identified trajectory over time provides greatly improved information for a
better understanding of the complex response to cold stress. For each time point, in-
cluding interpolated time points, we are able to give a ranked list of the most important
metabolites, analogous to a ranked list for a particular component in PCA or ICA.
The cold stress response clearly showed a nonlinear behaviour over time at the metabo-
lite level (Kaplan et al., 2004). A similar nonlinear behaviour was also found in gene
expression data from the same cold stress experiment (data not shown). This nonlinear
analysis can therefore be done in the same way for such data.
Even though time is the most common factor, nonlinearities are not restricted to tem-
poral experiments, they can also be caused by other continuously changed factors, e.g.,
different temperatures at a fixed time point. Even natural phenotypes often take the
form of a continuous range (Fridman et al., 2004) where nonlinear molecular behaviour
may occur.
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There is a great interest in molecular biology to obtain a comprehensive view of all rela-
tions among molecules within a biological system, and to ultimately determine the com-
plete molecular network. Network models are useful to discover regulatory differences
between distinct organisms or even between distinct physiological states or developmen-
tal stages. They might even be helpful to discover evolutionary characteristics.
One approach is to generate networks from existing biochemical pathway knowledge
to analyse and to visualise the usually large amount of information contained in many
databases (Jeong et al., 2000). However, this chapter is focused on the much more chal-
lenging task of reconstructing molecular networks from experimental observations.
Typically, the nodes of a molecular network (also termed vertices) stand for individual
molecules, e.g., metabolites. Molecules that are related in some way are connected by
edges. Depending on the source of information, edges can directly represent biochemical
reactions from database knowledge; or based on experimental observations, edges can
represent similar behaviour of molecules under varied experimental conditions.
Given the network model, global topological measures as well as local network motifs can
be applied to describe and analyse the characteristics of a network. The most elementary
measure is the degree or connectivity of a network node which is given by the number
k of links (edges) to any other node. A node of high degree represents a molecule with
many connections to other molecules and hence is supposed to play an important role in
the network. However, there exist many other so-called centrality measures (Freeman,
1979).
In the recent years global network topological measures were under strong discussion
since Barabasi and Albert (1999) discovered that most natural and social networks
cannot be sufficiently described by random graphs — the traditional model in graph
theory (Erdös and Rényi, 1960). Instead, the connectivity in most networks is scale-free
which is characterised by a power-law degree distribution P (k) ∼ k−γ , where P (k) is
the probability that a node has k links and γ is the degree exponent. It describes net-
work topologies consisting of many nodes with few connections and few nodes with high
connectivity. In random graphs, by contrast, all nodes have about the same number of
connections. The connectivity of nodes is Poisson distributed around an average degree
< k > which is used to characterise random networks. Scale-free networks, by contrast,
cannot be meaningfully characterised by their average connectivity number.
Many studies have shown evidence that molecular networks, metabolic as well as pro-
tein networks, are scale-free (Jeong et al., 2000; Barabasi and Oltvai, 2004). This is
important because the scale-free property offers a number of advantages. In contrast to
random networks, scale-free networks are more robust against random loss of nodes (Al-

63



6 Molecular networks

bert et al., 2000) and are characterised by a short average minimum distance between
two arbitrary chosen nodes, the small-world property (Watts and Strogatz, 1998). A
scale-free network topology is typical for networks which are not static. Instead, growth
is supposed to be the important factor responsible for this topology. Growth means that
scale-free networks expand continuously by the addition of new nodes which preferen-
tially attach to nodes that are already well connected. For molecular networks, growth
can be seen evolutionarily.
Another important aspect is to visualise molecular networks to better understand the
complexity of biological systems. Graph visualisation algorithm can be used to give a
two-dimensional representation either of the total network by using all molecules or of
a subnetwork only by selecting the molecules of interest. The nodes are represented by
dots that are connected by lines (edges) as done in Figure 6.1. Energy optimisation
algorithms are frequently used to obtain a graphical network representation where close
distances correspond to strong relations. However, other representations are possible as
well, for example, with minimised crossing edges. The objective to present the important
information in a very understandable way, can sometimes be better achieved without
realistic distances as, for example, in subway maps, see also Krempel (2004). The choice
of lay-out algorithm always depends on the information that is to be emphasised in the
graphical visualisation.
However, the use of experimental observations for network generation concerns funda-
mentally the problem of identification and quantification of molecular relations. The key
issue, discussed in this chapter, is therefore to define biological reasonable distances or
similarity measures. Even though correlation might be reasonable and to some extent
successful, there are strong limitations which restrict its utility significantly. This in-
cludes the restriction to linear dependencies as well as the problem of pair-wise measures
in multivariate data sets. Nonlinear dependencies, for example, can be better handled
by the measure of mutual information (Steuer et al., 2002). Other pair-wise distance
measures are discussed by Cichocki and Amari (2003) on page 544.
Nevertheless, one of the main problems is that pair-wise measures are restricted to re-
lations between two variables only and hence are insufficient for multivariate data sets.
Multivariate relations such as partial correlations are usually not taken into account.
Additionally, molecular similarity depends strongly on the involved biological factors. A
multivariate technique such as independent component analysis, which is able to identify
the major factors, may therefore be more suitable for detecting factor dependent similar-
ities. Both aspects can thereby be covered: multivariate relations and factor specificity.
For example, metabolites may respond similarly to an external stimulus but not to an-
other. Representing different biological aspects by individual components enables us to
reveal dynamic behaviour. The purpose of this chapter is to propose a new network
model that includes functional dependencies in order to analyse and interpret molecular
dynamics. It is denoted as the functional network.
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Figure 6.1: Correlation network. The graph shows the metabolite relational map
of cold stress adaptation of Arabidopsis thaliana. The network is based on pair-wise
correlation coefficients. The nodes represent metabolites which are connected by an
edge if their correlation coefficient exceeds a given threshold. A close distance refers
to a high correlation and hence to a similar behaviour during the experiment, which
may indicate a similar functionality of or even a biochemical interaction between these
metabolites.
Even though a large number of connections shown here are biologically reasonable, in
general, networks based on correlation alone should be viewed with caution. A high
correlation coefficient may often occur just by chance in large-scale data (Figure 6.2),
while strong biological relations, on the other hand, may show only a low correlation
coefficient due to the impact of multiple superimposed factors (Figure 6.3).

6.1 Correlation networks

Classical correlation (sometimes referred to as Pearson correlation) is a widely used
distance measure to explain similarities between genes or metabolites. It is used to
reconstruct molecular networks (Stuart et al., 2003), but also common in other distance-
based data analysis techniques such as in cluster algorithms (Eisen et al., 1998), and
often used for identifying coexpressions across multiple microarray data sets (Lee et al.,
2004).
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Figure 6.2: Random correlations. Illustrated is the huge number of pair-wise corre-
lations that occurs by chance in large-scale data sets. An artificial data set of typical
size (8,000 genes, 10 samples) was generated randomly from a Gaussian distribution.
A large number of false gene-pairs was detected to have ‘significant’ correlations. 822
gene-pairs, for example, were found to have a correlation factor higher than 0.95. In
the case of 20,000 genes, the numbers are even more than 6 times larger.
Better results were obtained by using more samples, as shown in the table. By using
20 samples only 2 pairs were of higher correlation than 0.9 and in case of 30 samples
only 4 pairs higher than 0.8.

Given two variables xi and xj (e.g., two metabolites), the correlation coefficient Cij

can then be obtained by Cij = corr(xi, xj) = cov(xi,xj)
σiσj

which is given by the covariance
cov(xi, xj) = 1

n−1(xi − x̄i)(xj − x̄j)T normalised by standard deviations σi and σj of both
variables xi and xj , n is the number of samples. A more detailed discussion related to
normalisation and PCA can be found in Chapter 3.
Two metabolites are considered similar when their absolute correlation coefficient |Cij |
exceeds a certain threshold CT , |Cij | > CT . A correlation network can then be con-
structed by representing metabolites as nodes and connecting them pair-wise with an
edge if their correlation coefficient is greater than the threshold CT chosen in advance.
The characteristics of such a network can be analysed with respect to certain graph
theoretic criteria, and two-dimensional graphical representations can be generated by
various layout algorithms. Note that similarity obtained from correlation should not
be confused with causality, since two metabolites showing a similar behaviour do not
necessarily belong to the same biochemical reaction.
Figure 3.1 shows a correlation network derived from the cold stress experiment from
Section 5.6. The network is based on the pair-wise correlation coefficients between 388
metabolites with 52 samples from seven different time points. A threshold of CT = 0.94
was chosen and all isolated nodes of metabolites, with none of their coefficients higher
than CT , has been discarded. The two-dimensional graphical layout was done with the
software package Pajek1 (Batagelj and Mrvar, 1998) by using the Fruchterman-Reingold
algorithm (Fruchterman and Reingold, 1991).

1 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Figure 6.3: Factor sensitivity of correlation. Illustrated is an observed pair-wise
metabolite response to two varied factors. One factor (IC 1) might be a change in light
intensity where both metabolites respond to and the other (IC 2) might be a variation
in temperature where metabolite 1 responds to. (A) When both factors are varied, the
metabolites are partially correlated, and hence a low pair-wise correlation is observed.
In (B) only the light factor (IC 1) is considered. The temperature is filtered out by
scaling down IC 2. Now we get a high correlation value as both metabolites respond
equally well to the imaginary light factor. (C) When we consider only the temperature
factor by scaling down the light variation, we still obtain a low correlation value, as
only metabolite 1 responds significantly to temperature.

Choosing the optimal threshold, however, is one of the most crucial issues. The connec-
tivity and hence the entire network structure depends strongly on this threshold. If the
threshold is too low, it would lead to a less informative graphical representation with
too many connections which even may contain an unacceptably large number of biologi-
cally false connections (Figure 6.2). If, on the other hand, the chosen threshold is too
high, we lose biologically relevant relations which are not indicated by high correlation
coefficients.
In the cold stress experiment (Figure 6.1), a threshold of CT = 0.94 was chosen which
was high enough to show a clearly arranged map of the most important correlations, but
too high to show other biological similarities such as between maltose and metabolites
with high mass spectral similarity to maltose, whose coefficients were below 0.90. The
chance of obtaining false similarities, however, is relatively small for this data set, since
there is a relatively low number of variables (388) and a large number of samples (52)
compared to, e.g., gene expression data sets.
However, beside the question of the optimal threshold, there are some more issues con-
cerning pure correlation as a distance measure and the general problem of pair-wise
measures. Interactions in molecular systems proceed dynamically according to biologi-
cal requirements. The question is therefore to what extent links in correlation networks
are driven by the investigated biological process and to what extent by confounding
factors (biological or technical artifacts) or simply by background noise.
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6.1.1 Drawbacks of pure correlation based distances

Even though pure correlation is a commonly used pair-wise distance or similarity mea-
sure, there are some major disadvantages. We exclude, for example, important informa-
tion provided by other criteria such as intensity, variance, distribution or information
theoretic criteria. For using this additional information it might be better to combine
different criteria or at least to take them for pre-selection (feature selection) to analyse
correlations on a previously reduced variable set.
Variance, for example, can be used as a measure for reliability. Even though variables
of small variance may be equally well involved in a biological process as variables of
larger variance, they are closer to the variance of background noise and hence more
corrupted by measuring inaccuracy. A large correlation between variables of higher vari-
ance is therefore more reasonable and should be weighted higher in a subsequent network
analysis. Otherwise many false correlations are obtained just by chance, as shown in
Figure 6.2 for large-scale data sets where many variable-pairs show by chance a high
correlation coefficient caused by background noise.

6.1.2 Partial correlations and the problem of pair-wise measures

Many known biochemical interactions, on the other hand, cannot be identified as rel-
evant because their correlation coefficients appear too low. Typically only a subset of
metabolites or enzymes assigned to a given pathway is significantly correlated (Steuer
et al., 2003; Ihmels et al., 2003). The reason is not only the high inaccuracy of the data.
In Figure 6.3 we demonstrate that such an effect can be caused by the large number of
distinct factors contained in molecular data. This includes biological as well as technical
factors. Metabolites that depend on several factors are often partially correlated and
hence show a poor pair-wise correlation.
The reason is that the correlation measure is factor sensitive. Whether we can observe a
high correlation coefficient or not depends essentially on all involved factors: examined
factors as well as confounding factors. Different experiments lead to different correla-
tion results. And multiple factors in one experiment, including confounding technical or
biological variation, lead to a mixture of influences to individual metabolites and hence
to a poor correlation result.
As illustrated in Figure 6.3, meaningful correlation coefficients can be achieved if there
is only one single factor involved. Data from real experiments, however, contain many
more factors. Even if we investigate only one biological process and might be able to con-
trol perfectly all environmental and technical influences, there would still be a biological
variation caused by several internal factors. This includes slightly different physiological
states of internal regulatory processes.
Consequently, a meaningful distance between two metabolites can only be given with
respect to a specific factor, e.g., a biological process or environmental variation. This
includes that two metabolites can be correlated with respect to one factor but not with
respect to another, which is biologically reasonable, since two metabolites might interact
with each other in one particular biological process but not in the other.
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One approach to handle multiple influences is the concept of partial correlations. Partial
correlations can be calculated between two variables with regard to one or more other
variables. However, this is a difficult task in large-scale data sets. In order to exclude
the influence of confounding factors we would need metabolites that depend directly and
solely on these factors. But usually we neither know these metabolites nor might such
metabolites even exist, as all metabolites may respond to several factors simultaneously.
Nevertheless, there are studies on the concept of partial correlations in which their ap-
plication was successfully demonstrated, even when applied to gene expression data (de
la Fuente et al., 2004).
The problem of multiple factors arises essentially in pair-wise comparisons of multivari-
ate data. Even if we use other pair-wise distance measures such as mutually information,
the problem still remains. Partial correlation analysis can already be seen as an exten-
sion to more than two variables. But the real consequence, however, would be to use
full multivariate data analysis, ICA, for example.

6.1.3 Necessary assumptions in correlation analysis

We do not state that correlation is insufficient at all, but using it alone requires strong
assumptions which do not hold for real molecular data in most cases.
The most important requirement for measuring a meaningful correlation between two
metabolites is that both respond to a single factor only. Such a factor might be a
variation in a particular environmental condition or an internal regulatory process. All
other potential variations must be decreased by controlling them as best as possible.

The easiest situation would be one single experimental factor of higher influ-
ence than all other biological or technical variation, hence one strong single
factor is responsible for nearly all variation in the experiment.

All metabolites affected by this factor should give a meaningful pair-wise correlation
coefficient. For example, the cold stress experiment, with the cold stress adaptation over
time as single factor, shows some biologically reasonable similarities in the correlation
network (Figure 6.1). However, the association with specific time points is missing.
And, metabolites which are not affected by the stress situation or corrupted by other
confounding variations might confuse the correlation measure.
On the other hand, for experiments of more than one factor at a time, correlation analysis
is less suitable. This includes experiments such as the crossing experiment of section 3.5
in which at least two factors are under examination, one that separates male from female
and another that separates the parent from the next (F1) generation.
However, multiple factors do not lead to poor correlation results in general. Special
experimental setups of identical genotypes under identical environmental conditions have
led to biologically reasonable correlation networks (Weckwerth et al., 2004). These
data without varied experimental factors are sometimes referred to as observational
data, in contrast to experimental data of specific targeted variation enforced by distinct
conditions. In observational data all samples are treated equally. Thus, the variation in
the data is only caused by biological variability, provided that the technical variation is
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sufficiently controlled.
The question is: under which assumptions and to what extent can we achieve reliable
correlation results from observational data. The strong requirement that only one single
factor varies during the experiment is not necessarily needed at all. It is important that
each metabolite responds to only one factor. But this includes that distinct metabolites
can also respond to different factors. The problem of partial correlations occurs only
when two metabolites depend on both identical and distinct factors as illustrated in
Figure 6.3.

Biologically reasonable correlations can be obtained as long as distinct sets
of metabolites respond to distinct factors. The distinct sets may represent
metabolite groups of distinct functionality. The weaker and more general
requirement would therefore be that multiple factors may occur but must be
associated with distinct (groups of) metabolites.

These factors may, for example, refer to distinct internal regulatory processes such as a
circadian cycle. A variation in the physiological state within such a process, generally
influences only the set of metabolites that belong to this particular process. As long
as these metabolites belong to no other process, correlation analysis should be able to
identify them as ‘functionally similar’.
Although most specific processes involve a limited set of substrates, individual substrates
are not restricted to only one process. Many metabolites such as primary carbohydrates
(e.g., sucrose, fructose, or glucose) take part in several biochemical pathways and thus
respond in parallel to several biological processes. Such responses to a mixture of factors
lead to poor correlation results. In addition, badly controlled environmental influences
such as light or temperature, generally have an impact on many metabolites and hence
may interfere with responses to other factors. Luscombe et al. (2004) have shown that
even transcription factors are frequently used across multiple processes. Due to this
potentially large number of superimposed responses, the use of the correlation measure
alone is very limited. Even though we sometimes obtain reasonable results (Figure 6.1),
many relations remain undetected (Steuer et al., 2003).
As a consequence, we have to find a way to consider each factor separately, e.g., by
decomposing the data space. Since metabolites may interact with distinct metabolites
in alternative processes, we cannot define a universal similarity among them. Similarity
in the sense of co-behaviour or co-response can only be seen with respect to a particular
biological process or functionality.
This implies that the naive approach of joining distinct experimental data sets for an
overall correlation analysis, should be taken with caution. Many data sets, even with
identical experimental conditions, typically lead to an increase of distinct factors, in
particular confounding technical factors, which often cannot be discarded adequately
by normalisation techniques. Instead of integrating raw data, integrating results from
individual experiments might be more appropriate, as discussed next.
In principle, a decomposition, as done by ICA, could be convenient for this purpose
due to its ability to identify even unexpected and unwanted factors which can then be
excluded.
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6.1.4 ICA to filter out confounding factors

ICA provides a mathematical framework for identifying and separating all significant
information contained in a data set. The objective of ICA is to represent distinct in-
formation separately by individual components. ICA could therefore be used as a filter
technique which subsequently decreases the influence of confounding factors by identify-
ing and scaling them close to zero as illustrated in Figure 6.3. Metabolites that respond
equally well to the same factor (component) will then get an increased correlation coef-
ficient.
This implies, however, that components themselves can directly be used to explain sim-
ilarities in the sense that metabolites that contribute highly to the same component are
functionally similar. The metabolites of highest contribution are those with smallest
angles to the direction of the component in the original data space.
In addition, using ICA has the advantage that we consider multiple criteria, includ-
ing variance in PCA pre-processing, to reduce the influence of the background noise.
And, importantly, components are often functionally interpretable. This can be used for
getting a functional or dynamic view of molecular relations.

6.2 Functional networks

A flexible organisation of cellular networks enables dynamic responses to changing en-
vironmental conditions. Several studies have shown evidence of extensive regulatory
mechanisms which activate or deactivate biochemical interactions according to biologi-
cal requirements (Ihmels et al., 2003; Luscombe et al., 2004; Han et al., 2004). This
requires a dynamic view of connectivity or similarity of molecular substances (metabo-
lites, proteins, RNA). Similarity cannot be considered irrespective of biological processes
or functionalities. Our objective is therefore to identify dynamics in molecular experi-
ments and to visualise them by a specific network type which we denote as the functional
network.
The functional network is constructed as a bipartite graph with two types of nodes:
functional nodes and molecular nodes. Functional nodes denote dynamics of biologi-
cal processes or functionalities, not states. This includes regulatory and developmental
processes as well as variations between disease and control, between mutations and
wild-type, or responses to external stimuli: environmental, chemical, physiochemical, or
biological (pathogen). Any response to an action which results in a changed molecular
composition can be represented by a functional node. Molecular nodes represent the
individual molecules or genes observed in the experiments.
Each molecular node is connected with each functional node. The distances denote the
importance of molecules to functionalities according to molecular responses in experi-
ments. A close distance stands for a strong relative change in concentration or activa-
tion of a particular molecule or gene during the experimental variation represented by
the functional node. The network is represented by a bipartite graph because neither
molecule nodes nor functional nodes are directly connected. The graph is undirected but
could be considered as directed graph with a meaning in both directions: either from
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molecule nodes to functional nodes with the meaning that molecules are important to
specific biological functions, or from functional nodes to molecular nodes denoting the
impact of biological processes on individual molecules.
The focus on distances between molecules and biological processes avoids the difficult
or even impossible problem of defining a static and universally valid similarity measure
between molecules which interact dynamically according to requirements in different bio-
logical processes. A network structure that sets molecules and processes into relation
is therefore well suited for visualising and analysing molecular dynamics. Precisely, it
provides the information to which stimuli molecules respond in common and to which
not. This cannot be done by a static molecule-molecule similarity measure.
The potentials of such a functionally related view are demonstrated by generating a net-
work that visualises the metabolic dynamics over time in cold stress adaptation of the
model plant Arabidopsis thaliana. We assume that the entire cold stress process consists
of functionally distinct sub-processes (e.g., early quick response, permanent cold stress
response). Each of these potentially overlapping sub-processes may require an individual
change of the metabolic composition. To visualise the potential dynamics, different time
points are represented by different functional nodes. Differences in metabolite responses
at individual time points will result in individual distances between metabolites and the
functional nodes respectively. The functional network therefore provides a view of cold
stress adaptation that represents the importance of individual molecules over time.
In a next step, the results of several individual experiments could be integrated into a
joint network representation. Such an extended view would provide more detailed and
refined information for a better understanding of the dynamic relations within a partic-
ular class of experiments, such as those of stress response. The final objective, however,
would be to represent and to understand the reorganisation of the whole molecular sys-
tem according to external stimuli or developmental stages.
Based on individual relations between molecules and biological processes, even the pro-
cesses are arranged in relation to each other which reveals similarities between them.
Some processes might be closer related than others according to similar effects to the
molecular system. For example, cold stress might be closely related to heat or even to
drought stress, also the salt stress response might be in some way related to the osmotic
stress (water or drought stress) response.
Instead of a hierarchical model of functionalities as used by (Ihmels et al., 2003), a net-
work model provides a functional map which is not necessarily hierarchically organised.
Biological processes can be considered as being located in a functional space without
strictly defined boundaries, as opposed to a hierarchical view of isolated modules. A
modification of one process might lead to a new closely related process, represented by
a continuous movement onto a new position in the functional map as demonstrated by
the time course (Figure 6.5).
Thus, functional networks provide a framework for integrating results from many in-
dividual experiments. Functional networks comprehensibly explain the importance of
molecules to individual biological processes. Since even the processes or functionalities
themselves are set into relation, the resulting map of functionalities may reveal interest-
ing physiological similarities.
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Figure 6.4: The tangent (black arrow) on the curved time component provides the
direction of change in molecular composition at the particular time corresponding to
the position on the curve. The most important metabolites, those with highest relative
change on their concentration levels, are given by the closest angle between any of the
axes representing the metabolites and the direction of the tangent.
The whole data space is given by all 388 metabolites. However, for the purpose of
illustration, three metabolites, maltose, proline, and raffinose, are exemplarily plotted
in a three-dimensional space.

6.2.1 Deriving similarities from large-scale data sets

Given a set of experimental observations, in general, we cannot extract the information
whether two substrates interact biochemically directly, instead we can only examine
how similar their behaviour is in a specific experiment. Since similarity depends on
the involved experimental factors, it means exactly how similar their response is to one
or more factors of the experiment. Hence, relations between molecules and individual
biological functionalities or processes are the basic information available from the data.
The objective is therefore to identify both the factors having a significant impact on the
data and the response of molecules to each of these factors. Suitable techniques would
be unsupervised decomposition methods such as PCA and ICA as well as supervised
discriminant or regression analysis, provided that the results can be validated well. The
purpose is always to identify and to represent the factors by linear and nonlinear com-
ponents.
Biological processes as response to external stimuli usually result in a changed molecular
composition. This is reflected by a shift of observations in a particular direction in the
molecular data space, the space where axes stand for individual molecules. The objec-
tive is to find the direction or curve, often termed linear or nonlinear component, that
explains best the trajectory or variation of a particular biological response. The impor-
tance of molecules can then be directly determined. The direction of a linear component
or the direction of a tangent on a specific position on a nonlinear (curved) component
(Figure 6.4) is often explained by weights (loadings) related to the original axes. The
absolute weight values are inversely proportional to the angle between the direction and
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the axes (molecules). A small angle (large absolute weight) implies a large impact on
this direction and hence suggests a high importance of the respective molecule within
the response process.
In principle, there are two potential strategies to construct networks from component
information. The way, demonstrated here, is to set molecules and biological processes
into relation depending on their impact or importance given by the weight values. In
general, no other threshold has to be chosen than the number of important molecules to
reduce the complexity of the representation.
Alternatively, we could link all molecules to each other that are important for a particular
process, assuming that all molecules of high contribution are functionally similar. Hence
we would define functionally related clusters of totally connected molecules. The clusters
potentially overlap due to molecules involved in more than one cluster. However, this
requires a threshold defining the relevance of a molecule to a particular process, either
by setting a weight (loading) value corresponding to a certain amount of importance or
contribution, or by setting the total number of molecules for each cluster. Nevertheless,
both choices would be crucial.
Even though we could easily apply topological measures (Barabasi and Oltvai, 2004) to
such molecule-molecule network, links between two molecules should be interpreted with
caution since they do not necessarily represent direct biochemical reactions.
However, instead of defining molecule-molecule distances, this chapter focused on the
definition of distances between molecules and biological functions or processes. It ap-
propriately reflects the information we can derive from large-scale functional studies.

6.2.2 Application: metabolite cold stress network

Results from nonlinear principal component analysis (nonlinear PCA) in section 5 are
used to build a functional network from a cold stress experiment of Arabidopsis thaliana.
The concentrations of 388 metabolites, observed at several times, are used in nonlinear
PCA to model the entire cold stress adaptation. Specifically, normalised data are used
representing the concentrations relatively to control time zero. The trajectory over
time is approximated by a nonlinear component, a curve lying in the data space given
by all metabolites. At any, even interpolated, time, the metabolites can be ranked
by importance. A metabolite is supposed to be important, if its relative concentration
changes strongly at the considered time point. The amount of change is shown by weights
or loading factors (Table 5.2) which specify the direction of a tangent at the particular
time position on the curve, as illustrated in Figure 6.4. The weights can therefore be
regarded as similarity measure used for defining distances between metabolites and time
nodes in the network. A close distance is used for large weights, and hence corresponds
to a metabolite of high response.
Individual time points are represented by functional nodes in the network. Potentially
distinct biological processes at different time points can therefore result in individual
network characteristics. Thus, the resulting network structure represents the relations
between distinct cold stress adaptation processes over time according to their metabolite
responses.
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Figure 6.5: Functional network. The dynamic in cold stress adaptation of Arabidopsis
thaliana is visualised. In this bipartite graph, metabolites are connected with func-
tional nodes which represent different times and hence potentially distinct processes.
The distances between metabolites and functional nodes are defined by nonlinear PCA
according to the importance of metabolites at individual time points. A close distance
stands for a strong relative change in metabolite concentration.
The 20 metabolites of highest response at any time are plotted. Even though no dis-
tances were defined between time points, they show a well ordered trajectory over time.
Also, functionally similar metabolites were mapped close to each other, although no
distance was defined between them. Maltose and metabolites with high mass spec-
tral similarity to maltose (e.g., maltose932) were all located in the centre of early time
nodes. Thus they are supposed to play an important role in the beginning of cold stress.
Similarly, fructose and glucose are functionally important at very early times (0.5, 1,
up to 4 hours). Other metabolites such as proline, glutamine, and some unknown
metabolites (marked by ‘?’) are closer connected to later time points.
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Nine time points are chosen. This includes the original (experimental) times at 1, 4,
12, 24, 48, and 96 hours, as well as three interpolated times at 0.5, 8, and 36 hours
used to fill gaps between original times in the graph. In order to emphasise the main
aspects in cold stress we restrict the network representation to the top 20 metabolites
of importance at any time. Other, less important metabolites have longer distances and
hence would be located outside of the current graph.
The resulting network structure in Figure 6.5 shows that cold stress adaptation is a dy-
namical process with timely distinct metabolite responses. The importance of metabo-
lites varies over time. Maltose and its variants occupied a central position among early
functional time nodes. This suggests a great importance in early cold stress response.

6.2.3 Summary

Functional networks provide detailed information for an understanding of the dynamical
behaviour in molecular systems. The utility of functional networks was demonstrated
by generating a network of the complex nonlinear cold stress adaptation of the model
plant Arabidopsis thaliana.
The results confirmed our expectations. For example, maltose and its variants are shown
to play a central role in early cold stress adaptation. In correlation analysis, by contrast,
maltose and its variants could neither be identified to be very similar nor to be important
in cold stress.
Although no distances were defined between functional time nodes, they show a rea-
sonable trajectory through the network. Functional networks can therefore also be
used to visualise similarities between several processes, including responses to differ-
ent conditions of distinct experiments. The result of such an integrative analysis would
be a comprehensive map of physiological processes surrounded by their most involved
molecules.
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7 Conclusions

The purpose of this work was to provide approaches to analyse and interpret molecular
data from experimental observations. Special emphasis was given to several important
issues: the impact of multiple factors, large-scale or high dimensionality, missing data,
complex nonlinear behaviour, and dynamical co-behaviour of molecules.
One of the key question is that of the optimal method that provides best the desired
information. In addition to the characteristics of the data, it depends strongly on our
focus of research. While supervised classification or regression might be most reason-
able for diagnostics tasks, unsupervised methods, as considered in this work, are very
suitable for more general exploratory research questions such as how experimental con-
ditions are reflected at molecular levels. Without using target information (class labels),
unsupervised methods aim to extract all available information from the data and hence
enable us to discover even unexpected phenomena. Unsupervised methods are therefore
valuable to get a better understanding of molecular processes or to improve molecular
technologies by reducing the impact of discovered confounding factors.
However, the crucial issue is still to distinguish relevant from non-relevant information.
There are several ways to include additional knowledge for defining our aims. Beside the
sometimes convenient way of using appropriate normalisation techniques, the choice of
an analysis technique is very important, precisely it is the choice of the analytic criterion
which defines our ‘interest’.
As long as we can assume that all variation in the data is caused by the examined
conditions, variance would be the appropriate criterion to extract the relevant informa-
tion. Thus, standard principal component analysis (PCA) would provide an optimal
visualisation of the data. However, often we cannot control the experiment perfectly,
and hence there are confounding factors with a large impact on the variance in the data
as well. Thus, we have to separate the multiple factors which, by assuming almost in-
dependent factors, leads us directly to the concept of independent component analysis
(ICA). ICA aims to extract statistically independent components by using higher order
or information theoretic criteria instead of variance. Since variance is still important for
reliability, it is essential to apply ICA in conjunction with PCA as pre-processing step to
filter out small variances close to background noise. Hence, the combination of criteria
is effective, because it can reveal relations that covariance (correlation and variance) in
PCA or information criteria such as mutual information in ICA alone cannot. Applied
to experimental data, we could show that components of ICA are of higher sensitivity
and independence than components of PCA. ICA was able to identify the examined
factors more precisely than PCA. Such precise components are essential to identify the
corresponding molecules with high accuracy. Additionally, with ICA we even discovered
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an unexpected (confounding) factor which could be interpreted as a technical artifact.
Thus, ICA provides a sound and flexible framework to separate the multiple factors that
have an impact on the observed data.
However, even though ICA could be successfully applied to several data sets, it is a
linear transformation and hence limited to discover linear relations. As long as we ex-
amine one condition in relation to another, linear methods might be sufficient. However,
experiments where we observe the molecular behaviour continuously over time or any
other factor, potential nonlinear relation between molecules might lead to more com-
plex data characteristics. Thus, analysing these data requires more complex nonlinear
analysis techniques. Here, we focused on a nonlinear extension of PCA which is based
on an auto-associative neural network. We have modified this nonlinear PCA algorithm
to achieve a hierarchical order of components, to be able to solve inverse problems, and
very important for molecular data: to be applicable to data sets with missing values.
With the idea that the model of missing data estimation has to match the model of the
final analysis, our strategy was to adapt nonlinear PCA to be applicable to incomplete
data instead of estimating the missing values separately in a prior step. Even though
our main objective was to extract nonlinear components from incomplete data sets, the
algorithm can be used to estimate missing values as well. Additionally, we proposed to
use the missing data estimation capability to validate the complexity of the model which
was shown to be very difficult for unsupervised nonlinear models. With an artificial data
set, we successfully demonstrated the validation potential.
By applying our modified nonlinear PCA algorithm to a cold stress adaptation of Ara-
bidopsis thaliana we could confirm that cold stress response is a nonlinear process over
time. Nonlinear PCA provides a model of this cold stress adaptation which could be
used to identify important molecules at any time point, including at interpolated times.
Nonlinear PCA is an unsupervised model and hence very suitable for providing results
which are unaffected by the individual variability of samples over time which occurs due
to the difference of individual response time from exact physical time of measurement.
Although there are only few samples in a high dimensional data space, the results are ro-
bust and biologically reasonable. This suggests that the experiment was well controlled.
On the other hand, there might be a high redundancy in molecular data, hence a low
intrinsic dimension, which makes it possible to handle the large number of variables.
Nevertheless, an increasing number of samples together with improved experimental
technologies can increase the accuracy of results significantly.
Finally, an attempt was made to link multivariate component analysis with network
representations. We proposed a network model, referred to as functional network, which
is based on molecule-function distances derived from component information. Since it
sets molecules in relation to their function or their contribution to biological processes, it
offers a method to visualise the dynamics in molecular processes. Conventional molecule-
molecule networks, by contrast, cannot reflect the dynamics which occur when molecules
behave similarly in one situation but distinct in an other. The potentials of functional
networks were demonstrated by generating a network of the cold stress adaptation of
Arabidopsis thaliana. The resulting cold stress network reveals very well the strong dy-
namics in the beginning of cold stress and shows the involved molecules.
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A next step could be to extend this approach by including more and more biological
functions or processes. Thus, we could use functional networks as a framework to in-
tegrate data from different experiments in order to generate a comprehensive map of
physiological processes and embedded molecules.

79





Glossary

Bioinformatics It is the field of using computers to get valuable information from large
amounts of data produced in biology and medicine. Bioinformatics covers a wide range
of topics from data acquisition, storage, and representation up to analysis, visualisation,
and interpretation. The two major objectives are to introduce standards and concepts
for collecting and organising data in order to make them easily accessible, and to develop
mathematical algorithms for analysing these data with the purpose of gaining new insight
into biological issues.

Component A component denotes a new variable obtained by a decomposition of a
data set. Ideally, components are directly related to experimental factors. Components
can therefore be seen as approximations of the original factors.

Factor In this work the term factor refers to specific sources of experimental variability:
environmental, genetical, or technical. This includes variations in light or temperature
conditions, a genotypical variation or even confounding factors such as technical ar-
tifacts or unexpected biological behaviour. The molecular response to these original
factors, given by experimental data sets, can be detected and explained mathematically
by components.

Model A mathematical model describes real processes in a usually simplified manner
that still covers the important aspects. It is commonly built by a function or any other
mathematical construct which can be used to make predictions or to draw conclusions.
Choosing the optimal model is a crucial issue, since each model has its own drawbacks
and benefits.

Nonlinear correlation Nonlinearly correlated means that a change in the value of one
variable has disproportionate effects on the values of other variables. The relations
between the variables cannot be explained by a linear function.

Nonlinear PCA (NLPCA) Nonlinear principal component analysis (NLPCA) is gen-
erally seen as a nonlinear generalisation of standard linear principal component analysis
(PCA). The principal components are thereby generalised from straight lines to curves.

Pathway A biochemical pathway is a line of molecules that are connected in a series
of biochemical reactions to achieve a specific functionality, commonly the production of
a particular metabolic substrate.
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Sample Here, a sample represents the molecular profile of an individual specimen taken
from a plant or any other organism. Such a profile may contain the concentration levels
of all observed metabolites.

Supervised method An algorithm that generates a function which maps inputs to
known outputs is termed supervised. This includes classification as well as regression
tasks. The inputs are, for example, observed molecular profile data of samples with
known class labels (e.g., control or disease) as output. For diagnostic tasks, such function
can then be used to predict the state of unknown biological samples.

Unsupervised method Algorithms that explain relationships and characteristics in
data sets without using known sample categories (class labels) are referred to as un-
supervised. The objective is to provide the major information contained in the data
set. This is helpful for an exploratory analysis to confirm expectations or to discover
unexpected biological or technical factors.

Variable Here, a variable stands for a particular gene, metabolite, or protein. It is
a mathematical quantity that represents the activation or concentration levels over all
observations in a particular experiment.
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