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Abstract. Experimental time courses often reveal a nonlinear behaviour.
Analysing these nonlinearities is even more challenging when the observed
phenomenon is cyclic or oscillatory. This means, in general, that the data
describe a circular trajectory which is caused by periodic gene regulation.
Nonlinear PCA (NLPCA) is used to approximate this trajectory by a curve
referred to as nonlinear component. Which, in order to analyse cyclic
phenomena, must be a closed curve hence a circular component. Here, a
neural network with circular units is used to generate circular components.
This circular PCA is applied to gene expression data of a time course of
the intraerythrocytic developmental cycle (IDC) of the malaria parasite
Plasmodium falciparum. As a result, circular PCA provides a model which
describes continuously the transcriptional variation throughout the IDC.
Such a computational model can then be used to comprehensively analyse
the molecular behaviour over time including the identification of relevant
genes at any chosen time point.
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1 Introduction

Many phenomena in biology proceed in a cycle. These include circadian rhythms, the
cell cycle, and other regulatory or developmental processes such as the cycle of repetitive
infection and persistence of malaria parasites in red blood cells which is considered here.
Due to an individual behaviour of molecules over time, the resulting data structure
becomes nonlinear as shown, for example, in Scholz et al. (2005) for a cold stress adap-
tation of the model plant Arabidopsis thaliana. In this context, nonlinearity means that
the trajectory of the data describes a curve over time. For periodic processes, this curve
is closed and hence cannot be well described by a standard (open) nonlinear component.
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Therefore, the objective is to visualise and analyse the potential circular structure of
molecular data by a nonlinear principal component analysis which is able to generate
circular components.

Nonlinear principal component analysis (NLPCA) is generally seen as a nonlinear genera-
lisation of standard linear principal component analysis (PCA) (Jolliffe, 1986; Diaman-
taras and Kung, 1996). The principal components are generalised from straight lines to
curves. Here, we focus on a neural network based nonlinear PCA, the auto-associative
neural network (Kramer, 1991; DeMers and Cottrell, 1993; Hecht-Nielsen, 1995; Scholz
and Vigario, 2002).

To generate circular components, Kirby and Miranda (1996) constrained network units to
work in a circular manner. In the fields of atmospheric and oceanic sciences, this circular
PCA is applied to oscillatory geophysical phenomena (Hsieh, 2004). Other applications
are in the field of robotics to analyse and control periodic movements (MacDorman et al.,
2004). Here, we demonstrate the potential of circular PCA to biomedical applications.
The biological process, analysed here, is the intraerythrocytic developmental cycle (IDC)
of Plasmodium falciparum.

P. falciparum is the most pathogenic species of the Plasmodium parasite, which causes
malaria. The three major stages of Plasmodium development take place in the mosquito
and upon infection of humans in liver and red blood cells. The infection of red blood
cells (erythrocytes) recurs with periodicity of around 48 hours. This intraerythrocytic
developmental cycle (IDC) of P. falciparum is responsible for the clinical symptoms of
the malaria disease. A better understanding of the IDC may provide opportunities to
identify potential molecular targets for anti-malarial drug and vaccine development.

2 NLPCA - nonlinear PCA

The nonlinear PCA (NLPCA), proposed by Kramer (1991), is based on a multi-layer
perceptron (MLP) with an auto-associative topology, also known as an autoencoder,
replicator network, bottleneck or sandglass type network. Comprehensive introductions
to multi-layer perceptrons can be found in Bishop (1995) and Haykin (1998).

The auto-associative network performs the identity mapping. The output & is enforced
to equal the input x with high accuracy. This is achieved by minimising the square error
| 2 — & ||2. This is no trivial task, as there is a ‘bottleneck’ in the middle, a layer of fewer
nodes than at the input or output, where the data have to be projected or compressed
into a lower dimensional space Z.

The network can be considered as two parts: the first part represents the extraction
function @, 1 X — Z, whereas the second part represents the inverse function, the
generation or reconstruction function ®4, : Z — X. A hidden layer in each part enables
the network to perform nonlinear mapping functions.

In the following we describe the applied network topology by the notation [l1-la-. . .- Ig]
where [ is the number of units in layer s. For example, [3-4-1-4-3] specifies a network
with three units in the input and output layer, four units in both hidden layers, and one
unit in the component layer, as illustrated in Figure 1.
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Figure 1: Standard auto-associative neural network. The network output & is required to be
equal to the input x. Illustrated is a [3-4-1-4-3] network architecture. Biases have been omitted
for clarity. Three-dimensional samples x are compressed (projected) to one component value z
in the middle by the extraction part. The inverse generation part reconstructs & from z. The
sample Z is usually a noise-reduced representation of z. The second and fourth hidden layer,
with four nonlinear units each, enable the network to perform nonlinear mappings. The network
can be extended to extract more than one component by using additional units in the component
layer in the middle.

2.1 Circular PCA

Kirby and Miranda (1996) introduced a circular unit at the component layer that de-
scribes a potential circular data structure by a closed curve. As illustrated in Figure 2,
a circular unit is a pair of networks units p and ¢ whose output values z, and z, are
constrained to lie on a unit circle

42l =1 (1)

Thus, the values of both units can be described by a single angular variable 6.
zp = cos(0) and zq = sin(0) (2)

The forward propagation through the network is as follows: First, equivalent to standard
units, both units are weighted sums of their inputs z,, given by the values of all units m
in the previous layer.

ap = Z WpmZm and ag = Z Wam Zm (3)
m m

The weights wp,, and wg, are of matrix W5. Biases are not explicitly considered,
however, they can be included by introducing an extra input with activation set to one.



Figure 2: Circular PCA network. To obtain circular components, the auto-associative neural
network contains a circular unit pair (p, ¢) in the component layer. The output values z, and z,
are constrained to lie on a unit circle and hence can be represented by a single angular variable 6.

The sums a, and a, are then corrected by the radial value

r=,/a+ a2 (4)

to obtain circularly constraint unit outputs z, and z,

ap Aq

and 2g =

Zn =
P T r

For backward propagation, we need the derivatives of the error function

1 N d
E= EZZW—@@F (6)

with respect to all network weights w. The dimensionality d of the data is given by the
number of observed variables, N is the number of samples.

To simplify matters, we first consider the error e of a single sample =,
e= %Zf [2; — &]* with & = (21,...,24)7. The resulting derivatives can then be ex-
tended with respect to the total error £ given by the sum over all n samples, £ =3 e".
While the derivatives of weights of matrices Wy, W3, and W, are obtained by standard
back-propagation, the derivatives of the weights wy,, and wg,, of matrix Ws which con-
nect units m of the second layer with the units p and ¢ are obtained as follows: We first
need the partial derivatives of e with respect to z, and z,:

~ Oe ~ e
5, = aizp _ ;wjpo-j and Gy = ETzrq = ;quoj (7)

where o; are the partial derivatives a%ej of units j in the fourth layer.
The required partial derivatives of e in respect to a, and a4 of the circular unit pair are

Oe P Oe z

% = e = (Opzg = Gqzp) 5 and oy = dag (Gg2p = Op2q) 5 ®)
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Figure 3: Inverse circular PCA network. As inverse model, only the second part of the auto-
associative neural network (Figure 2) is used. Now, the values a, and @, are unknown inputs
and have to be estimated together with all weights w of matrices W3 and Wj. This is done by
propagating the partial errors o; back to the input (component) layer. Beside a higher efficiency,
the main advantage is that the inverse model can be applied to incomplete data. If one value z;
of a sample vector z is missing, the corresponding partial error o; is set to zero, thereby ignoring
the missing value but still back-propagating all others.

The final back-propagation formulas for all n samples are

OF
Owpm

oF
= Z Tp Zm and D = Z T4 Zm (9)

2.2 Inverse NLPCA model

In this work, NLPCA is applied as an inverse model (Scholz et al., 2005). Only the
second part, the generation or reconstruction part, of the auto-associative neural network
is modelled, see Figure 3. The major advantage is that NLPCA can be applied to
incomplete data. Another advantage is a higher efficiency since only half of the network
weights have to be estimated.

Optimising the second part as inverse model means that the component layer becomes
the input layer. Thus, in circular PCA as inverse model we have to find suitable values
for all network weights as well as for a, and a, as input. Hence, the error function F
depends on both the weights w and the component layer inputs a, and a,

Blw,apag) = 5 33 [af — 7w, ay, 0, (10)

The required partial derivatives of F with respect to the weights w of matrix W3 and
W4 can be obtained by standard back-propagation, see Scholz et al. (2005), while the
derivatives with respect to a, and a, are given by equation (8).
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Figure 4: Nonlinear PCA (NLPCA). Shown are results of three variants of NLPCA applied to
a two-dimensional artificial data set of a noisy circle. (A) The standard NLPCA cannot describe
a circular structure completely. There is always a gap. (B) The inverse NLPCA can provide
self-intersecting components and hence approximates the circular data structure already quite
well but the circular PCA (C) is most suitable since it is able to approximates the data structure
continuously by a closed curve.

2.3 Artificial data

The performance of NLPCA is illustrated in Figure 4 for the three described variants:
the standard auto-associative network (NLPCA), the inverse model with standard units
(NLPCA.inv) and with circular units (NLPCA.cir). NLPCA is applied to data lying on
a unit circle and disturbed by Gaussian noise with standard deviation 0.1. The standard
auto-associative network cannot describe a circular structure completely by a nonlinear
component due to the problem to map at least one point on the circle onto two different
component values. This problem does not occur in inverse NLPCA since it is only a
mapping from component values to the data. However, the resulting component is an
intersecting circular loop with open ends. Thus, a closed curve solution as provided by
circular PCA would be more appropriate to describe the circular structure of the data.

2.4 Experimental data

Circular PCA is used to analyse the transcriptome of the intraerythrocytic developmen-
tal cycle (IDC) of the malaria parasite Plasmodium falciparum (Bozdech et al., 2003),
available at http://malaria.ucsf.edu/. The 48-hour IDC is observed by a sampling
time of one hour thereby providing a series of time points 1, 2, ..., 48. Since two
time points, 23 and 29, are missing, the total number of expression profiles (samples) is
46. Each gene is represented by one or more oligonucleotides on the microarray. The
samples of individual time points (Cy5) were hybridised against a reference pool (Cy3).
The loga(Cy5/Cy3) ratio is used in our analysis. Due to the sometimes large number of
missing data in the total set of 7,091 oligonucleotides, we removed all oligonucleotides
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Figure 5: Circular PCA. (A) The data describe a circular structure which is approximated by a
closed curve (the circular component). The circular component is one single curve in the 5,800
dimensional data space. Visualised is the reduced three dimensional subspace given by the first
three components of standard (linear) PCA.

(B) The circular component (corrected by an angular shift) is plotted against the original ex-
perimental time. It shows that the main curvature, given by the circular component, explains
the trajectory of the IDC over 48 hours.

of more than 1/3 missing time observations (more than 15 missing time points). The
considered reduced data set contains the logo ratios of hybridisations of 5,800 oligonu-
cleotides at 46 time points.

Identifying the optimal curve (the circular component) in the very high-dimensional
data space of 5,800 variables is difficult or even intractable with a number of 46
data points. Therefore, the 5,800 variables are linearly reduced to 12 principal com-
ponents, each of which is a linear combination of all oligonucleotides. To handle
missing data, a PCA algorithm, based on a linear neural network working in in-
verse mode (Scholz et al., 2005), is used. Alternatively, probabilistic PCA (PPCA)
(http://lear.inrialpes.fr/ verbeek/software) by Verbeek et al. (2002), based on
Roweis et al. (2002), can be used as PCA algorithm for missing data.

Circular PCA is applied to the reduced data set of 12 linear components. It describes a
closed curve explaining the circular structure of the data, as shown in Figure 5 and 6.
To achieve circular PCA, a network of a [2-5-12] architecture is used, where the two
units in the first layer are the circularly constrained unit pair (p,q). Using the inverse
12 eigenvectors the curve can be mapped back into the 5,800-dimensional original data
space. The circular component represents the 48 hour time course of the IDC observa-
tion, as shown in Figure 5B.

Thus, circular PCA provides a model of the IDC, which gives us to any chosen time
point, including interpolated time points, the corresponding gene expression values. The
neural network model is given by a function & = ®g¢,(0) which maps any time point,
represented by a angular value § onto a 5,800-dimensional vector & = (&1, ..., 5800)"
representing the response of the original variables. Thus, circular PCA provides ap-
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Figure 6: Pair-wise scatter plot of four selected oligonucleotides of importance at 12, 24, 36,
and 48 hours respectively, see also Table 1. The curve represents the circular component which
approximates the trajectory of the 48 hour IDC.

proximated response curves of all oligonucleotides, as shown in Figure 7 for the top 50
oligonucleotides of genes of highest response (highest relative change at their expression
level).

In standard PCA we can present the variables that are most important to a specific
component by a rank order given by the absolute values of the corresponding eigenvec-
tor, sometimes termed loadings or weights. As the components are curves in nonlinear
(circular) PCA, no global ranking is possible. The rank order is different for different
positions on the curved component, meaning that the rank order depends on time. The
rank order for each individual time point is given by the values of the tangent vector
v = % on the curve at a specific time 6. To compare different times, we use lo-normalised
tangents 0; = v;/\/>; Jvi]2 such that 32, (6;)* = 1. Large values 9; point to genes of high
changes on their expression ratios and hence may have an importance at the considered
time point. A list of 10 most important genes at 12 hours and 36 hours is exemplarily
given in Table 1.
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Figure 7: Gene expression curves. Plotted are shapes of oligonucleotide response curves over
the 48-hour IDC time course. Shown are the top 50 oligonucleotides of genes of highest response
at any time. Nearly all of them show a period of 48 hours: one up- and down-regulation within
the 48-hour time course. However, the time of activation is differently for individual genes.

3 Conclusions

Circular PCA as special case of nonlinear PCA (NLPCA) was applied to gene expres-
sion data of the intraerythrocytic developmental cycle (IDC) of the malaria parasite
Plasmodium falciparum. The data describe a circular structure which was found to be
caused by the cyclic (nonlinear) behaviour of gene regulation.

The extracted circular component represents the trajectory of the IDC. Thus, circular
PCA provides a noise reduced model of gene responses continuously over the full time
course. This computational model can then be used for analysing the molecular be-
haviour over time in order to get a better understanding of the IDC.

With the increasing number of time experiments, nonlinear PCA may become more and
more important in the field of molecular biology. This includes the analysis of both:
non-periodic phenomena by standard NLPCA and periodic phenomena by the circular
variant.
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12 hours 36 hours
D; Oligo ID PlasmoDB ID ; Oligo ID PlasmoDB ID

-0.06 i6851_1 — 0.06 ks157_11 PF11.0509
-0.06 n150.50 PF14.0102 0.06 a10325_32 PFA0110w
-0.05 €24991_1 PFE0080c 0.06 a10325_30j —

-0.05 opfg0013 — 0.06 b70 PFB0120w
-0.05 c76 PFC0120w 0.06 a10325_30 PFA0110w
-0.05 nl40_2 PF14.0495 0.06 114975_1 PF07_.0128
-0.05 opff72487 — 0.06 7391 PF07.0128
-0.05 kn5587_2 MAL7P1.119 0.06 opfl0045 PFL1945¢
0.05 £24156_1 PFI1785w 0.05 1032529 PFAO0110w
0.05 d44388_1 PF10.0009 0.05 ks75_18 PF11.0038

Table 1: Candidate genes. At specific times, exemplarily shown for 12 and 36 hours, the most
important genes can be provided. Listed are the identified oligonucleotides and, if available,
the corresponding PlasmoDB gene identifier of the Plasmodium genome resource PlasmoDB.org
(Kissinger et al., 2002; Gardner et al., 2002). Note that a single gene may be represented by
more than one oligonucleotide.

References

Bishop, C. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

Bozdech, Z., Llinas, M., Pulliam, B., Wong, E., Zhu, J., DeRisi, J. The transcriptome of
the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology,
1(1):E5, 2003.

DeMers, D., Cottrell, G.W. Nonlinear dimensionality reduction. In Hanson, D., Cowan,
J., Giles, L., eds., Advances in Neural Information Processing Systems 5, pages 580—
587, San Mateo, CA, 1993. Morgan Kaufmann.

Diamantaras, K., Kung, S. Principal Component Neural Networks. Wiley, New York,
1996.

Gardner, M., Hall, N., Fung, et al., E. Genome sequence of the human malaria parasite
plasmodium falciparum. Nature, 419(6906):498-511, 2002.

Haykin, S. Neural Networks - A Comprehensive Foundation. Prentice Hall, 2nd edition,
1998.

Hecht-Nielsen, R. Replicator neural networks for universal optimal source coding.
Science, 269:1860-1863, 1995.

10



Hsieh, W.W. Nonlinear multivariate and time series analysis by neural network methods.
Reviews of Geophysics, 42(1):RG1003.1-RG1003.25, 2004.

Jolliffe, I.T. Principal Component Analysis. Springer-Verlag, New York, 1986.

Kirby, M.J., Miranda, R. Circular nodes in neural networks. Neural Computation, 8(2):
390402, 1996.

Kissinger, J., Brunk, B., Crabtree, J., Fraunholz, M., Gajria, et al., B. The plasmodium
genome database. Nature, 419(6906):490-492, 2002.

Kramer, M.A. Nonlinear principal component analysis using auto-associative neural
networks. AIChE Journal, 37(2):233-243, 1991.

MacDorman, K., Chalodhorn, R., Asada, M. Periodic nonlinear principal component
neural networks for humanoid motion segmentation, generalization, and generation.
In Proceedings of the Seventeenth International Conference on Pattern Recognition
(ICPR), Cambridge, UK, pages 537-540, 2004.

Roweis, S.T., Saul, L.K., Hinton, G.E. Global coordination of locally linear models. In
Dietterich, T.G., Becker, S., Ghahramani, Z., eds., Advances in Neural Information
Processing Systems 14, pages 889-896, Cambridge, MA, 2002. MIT Press.

Scholz, M., Kaplan, F., Guy, C., Kopka, J., Selbig, J. Non-linear PCA: a missing data
approach. Bioinformatics, 21(20):3887-3895, 2005.

Scholz, M., Vigario, R. Nonlinear PCA: a new hierarchical approach. In Verleysen, M.,
ed., Proceedings ESANN, pages 439444, 2002.

Verbeek, J., Vlassis, N., Krose, B. Procrustes analysis to coordinate mixtures of proba-
bilistic principal component analyzers. Technical report, Computer Science Institute,
University of Amsterdam, The Netherlands, 2002.

11



	Introduction
	NLPCA - nonlinear PCA
	Circular PCA
	Inverse NLPCA model
	Artificial data
	Experimental data

	Conclusions

