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Introduction
Metabolite fingerprinting is a technology for provid-
ing information from spectra of total compositions
of metabolites. We will show, that independent
component analysis (ICA) applied to such high di-
mensional data has a higher informative power than
the classical principal component analysis (PCA).
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Figure 1: Mass spectra of Arabidopsis thaliana crosses
are analysed by PCA and ICA to investigate how
metabolite fingerprinting reflects the biological back-
ground.
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Figure 2: PCA fails to show optimal projections of the
data with differences between the lines and crosses. The
first principal components (PC 1), the component of
highest variance, has no information about discrimi-
nating the lines or crosses. A better result is given by
the components PC 2 and PC 3 of smaller variance,
meaning that the required experimental information is
not related to the highest variance in the data.

ICA versus PCA
In contrast to PCA, the components of ICA are con-
structed such as to minimise the statistical dependence
and are therefore termed independent components (ICs).
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Figure 3: ICA gives a better projection result than
PCA and this result is already given by the first two
ICs (when ranked by the kurtosis measure). Also, in
ICA the masses are more separated to different ICs,
confirming that different ICs represent independent
biological processes, where different metabolites are
involved.
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Figure 4: PCA and ICA applied to an artificial data set.
The components of ICA are related to the cluster struc-
ture of the data and are not restricted to be orthogonal.

Kurtosis
The kurtosis measure is used to rank the extracted in-
dependent components to our interest. The kurtosis is a
classical measure of non-Gaussianity, it indicates whether
the data are peaked or flat relative to a Gaussian (normal)
distribution.

kurtosis(z) =

∑n
i=1(zi − µ)4

(n − 1)σ4
− 3

where z = (z1, z2, ..., zn) is representing a vari-
able or component with mean µ and and standard
deviation σ, n is the number of samples. The
kurtosis is the fourth auto-cumulant after mean
(first), variance (second), and skewness (third).
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Figure 5: Negative kurtosis can indicate a cluster
structure (different experimental conditions) or an
uniformly distributed factor (temperature). Thus the
components with the most negative kurtosis can give us
the most relevant information.

PCA – pre-processing
The higher informative power of ICA is only achieved
when ICA is combined with PCA, to reduce first the
dimension of the data set. The number of princi-
pal components determines the quality of ICA signifi-
cantly, therefore we propose the kurtosis as a criterion
for estimating the optimal dimension automatically.
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Figure 6: ICA is applied to reduced data sets with dif-
ferent numbers of PCs. At 6 components of PCA, ICA
can extract the highest number of interesting ICs, i.e.
ICs with negative kurtosis.

As a negative kurtosis indicates relevant components, the
dimension, where we can extract the highest number of in-
dependent components with negative kurtosis is the optimal
dimension.

Experimental artefact
We found that ICA could detect three relevant components.
The first independent component is usable for separat-
ing the Arabidopsis crosses from the background parental
lines, the second contains information for discriminating
the two parental lines. The third component is not re-
lated to the biological experiment, but we could find a re-
lation to the identifier of the samples, representing the or-
der over time, measured in the mass spectrometer. Hence
IC 3 is an experimental artefact due to increasing contami-
nation of the QTOF skimmer along the analytical sequence.
This technical factor could not be detected by PCA.
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Figure 7: Three components with clearly negative kur-
tosis are detected. The third component (IC 3), an al-
most uniformly distributed factor, could be interpreted
as an experimental artefact, related to the order over
time, when the samples were measured.

Conclusion
ICA has a high informative power when it is combined
with suitable pre-processing and evaluation criteria.
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Figure 8: The proposed ICA procedure. First, the
data set is reduced by PCA thereby maintaining all of
the relevant variances. ICA is applied to this reduced
data set and the extracted independent components are
sorted by their kurtosis value.

The resulting independent components have been inter-
preted: The first component discriminates the Arabidopsis
crosses from the background parental lines, and the second
component discriminates the two parental lines. The third
component could be interpreted as an experimental artefact.
The described approach is avail-
able for public at the MetaGeneAlyse
(http://metagenealyse.mpimp-golm.mpg.de),
a web-based analysis tool for analysing biological data
from metabolomics, proteomics and transcriptomics.
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